# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest class TestRmspropOp1(OpTest): ''' Test RMSProp with explicit inputs ''' def setUp(self): self.op_type = "rmsprop" param = np.random.random((123, 321)).astype("float32") mean_square = np.random.random((123, 321)).astype("float32") learning_rate = np.array([0.01]).astype("float32") grad = np.random.random((123, 321)).astype("float32") moment = np.zeros((123, 321)).astype("float32") epsilon = 1e-6 decay = 0.9 momentum = 0.0 self.inputs = { 'Param': param, 'MeanSquare': mean_square, 'LearningRate': learning_rate, 'Grad': grad, 'Moment': moment, } self.attrs = {'epsilon': epsilon, 'decay': decay, 'momentum': momentum} ms_out = decay * mean_square + (1 - decay) * grad * grad moment_out = momentum * moment + \ learning_rate * grad / np.sqrt(ms_out + epsilon) param_out = param - moment_out self.outputs = { 'ParamOut': param_out, 'MomentOut': moment_out, 'MeanSquareOut': ms_out } def test_check_output(self): self.check_output() class TestRmspropOp2(OpTest): '''Test RMSProp with default values for attributes ''' def setUp(self): self.op_type = "rmsprop" param = np.random.random((123, 321)).astype("float32") mean_square = np.random.random((123, 321)).astype("float32") learning_rate = np.array([0.01]).astype("float32") grad = np.random.random((123, 321)).astype("float32") moment = np.zeros((123, 321)).astype("float32") epsilon = 1.0e-10 decay = 0.9 momentum = 0.0 self.inputs = { 'Param': param, 'MeanSquare': mean_square, 'LearningRate': learning_rate, 'Grad': grad, 'Moment': moment, } ms_out = decay * mean_square + (1 - decay) * grad * grad moment_out = momentum * moment + \ learning_rate * grad / np.sqrt(ms_out + epsilon) param_out = param - moment_out self.outputs = { 'ParamOut': param_out, 'MomentOut': moment_out, 'MeanSquareOut': ms_out } def test_check_output(self): self.check_output() if __name__ == "__main__": unittest.main()