# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest class TestAdadeltaOp1(OpTest): def setUp(self): self.op_type = "adadelta" param = np.random.uniform(-1, 1, (102, 105)).astype("float32") grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") # The squared gradient is positive avg_squared_grad = np.random.random((102, 105)).astype("float32") # The squared update is positive avg_squared_update = np.random.random((102, 105)).astype("float32") rho = 0.95 epsilon = 1e-6 self.inputs = { 'Param': param, 'Grad': grad, 'AvgSquaredGrad': avg_squared_grad, 'AvgSquaredUpdate': avg_squared_update } self.attrs = {'rho': rho, 'epsilon': epsilon} avg_squared_grad_out = rho * avg_squared_grad + \ (1 - rho) * np.square(grad) update = -np.multiply( np.sqrt( np.divide(avg_squared_update + epsilon, avg_squared_grad_out + epsilon)), grad) avg_squared_update_out = rho * avg_squared_update + \ (1 - rho) * np.square(update) param_out = param + update self.outputs = { 'ParamOut': param_out, 'AvgSquaredGradOut': avg_squared_grad_out, 'AvgSquaredUpdateOut': avg_squared_update_out } def test_check_output(self): self.check_output() class TestAdadeltaOp2(OpTest): '''Test Adadelta op with default attribute values ''' def setUp(self): self.op_type = "adadelta" param = np.random.uniform(-1, 1, (102, 105)).astype("float32") grad = np.random.uniform(-1, 1, (102, 105)).astype("float32") # The squared gradient is positive avg_squared_grad = np.random.random((102, 105)).astype("float32") # The squared update is positive avg_squared_update = np.random.random((102, 105)).astype("float32") rho = 0.95 epsilon = 1e-6 self.inputs = { 'Param': param, 'Grad': grad, 'AvgSquaredGrad': avg_squared_grad, 'AvgSquaredUpdate': avg_squared_update } avg_squared_grad_out = rho * avg_squared_grad + \ (1 - rho) * np.square(grad) update = -np.multiply( np.sqrt( np.divide(avg_squared_update + epsilon, avg_squared_grad_out + epsilon)), grad) avg_squared_update_out = rho * avg_squared_update + \ (1 - rho) * np.square(update) param_out = param + update self.outputs = { 'ParamOut': param_out, 'AvgSquaredGradOut': avg_squared_grad_out, 'AvgSquaredUpdateOut': avg_squared_update_out } def test_check_output(self): self.check_output() if __name__ == "__main__": unittest.main()