// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" namespace paddle { namespace framework { class InferShapeContext; class VarDesc; } // namespace framework } // namespace paddle namespace paddle { namespace operators { class TransposePrimOp : public framework::OperatorBase { public: TransposePrimOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { PADDLE_THROW(platform::errors::Unimplemented( "Prim operator transpose_p should not be excuted directly")); } }; class TransposePrimOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of transpose_p op."); AddOutput("Y", "(Tensor), The output tensor of transpose_p op."); AddAttr>("axis", "(std::vector) Tanspose axis."); AddComment(R"DOC( Autograd primitive transpose_p operator. )DOC"); } }; class TransposePrimOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; framework::InferShapeVarPtr y_var_ptr = ctx->GetOutputVarPtrs("Y")[0]; framework::VarDesc *x_var = BOOST_GET(framework::VarDesc *, x_var_ptr); auto x_shape = x_var->GetShape(); auto axis = ctx->Attrs().Get>("axis"); size_t x_rank = x_shape.size(); size_t axis_size = axis.size(); PADDLE_ENFORCE_EQ(x_rank, axis_size, platform::errors::InvalidArgument( "The input tensor's dimension " "should be equal to the axis's size. " "But received input tensor's dimension is %d, " "axis's size is %d", x_rank, axis_size)); std::vector count(axis_size, 0); for (size_t i = 0; i < axis_size; i++) { PADDLE_ENFORCE_GE(axis[i], 0, platform::errors::InvalidArgument( "The axis should be greater than or equal to 0." "But received %d of axis[%d]", axis[i], i)); PADDLE_ENFORCE_EQ( axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1, true, platform::errors::InvalidArgument( "Each element of Attribute axis should " "be a unique value range from 0 to (dims - 1), " "where the dims is the axis's size, " "unique value means this axis value can appear only once. " "But received axis[%d] is %d, axis_size is %d, " "count[axis[%d]] is %d", i, axis[i], axis_size, i, count[axis[i]])); } std::vector y_shape(axis_size); for (size_t i = 0; i < axis_size; i++) { y_shape[i] = x_shape[axis[i]]; } BOOST_GET(framework::VarDesc *, y_var_ptr)->SetShape(y_shape); } }; class TransposePrimOpVarTypeInference : public framework::StaticGraphVarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { auto x_name = Input(ctx, "X")[0]; auto y_name = Output(ctx, "Y")[0]; SetType(ctx, y_name, GetType(ctx, x_name)); SetDataType(ctx, y_name, GetDataType(ctx, x_name)); } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR(transpose_p, paddle::operators::TransposePrimOp, paddle::operators::TransposePrimOpMaker, paddle::operators::TransposePrimOpShapeInference, paddle::operators::TransposePrimOpVarTypeInference);