// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" namespace paddle { namespace framework { class InferShapeContext; class VarDesc; } // namespace framework } // namespace paddle namespace paddle { namespace operators { class MatmulPrimOp : public framework::OperatorBase { public: MatmulPrimOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { PADDLE_THROW(platform::errors::Unimplemented( "Prim operator matmul_p should not be excuted directly")); } }; class MatmulPrimOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of matmul_p op."); AddInput("Y", "(Tensor), The input tensor of matmul_p op."); AddOutput("Z", "(Tensor), The output tensor of matmul_p op."); AddComment(R"DOC( Autograd primitive matmul_p operator. )DOC"); } }; class MatmulPrimOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; framework::InferShapeVarPtr y_var_ptr = ctx->GetInputVarPtrs("Y")[0]; framework::InferShapeVarPtr z_var_ptr = ctx->GetOutputVarPtrs("Z")[0]; framework::VarDesc *x_var = BOOST_GET(framework::VarDesc *, x_var_ptr); framework::VarDesc *y_var = BOOST_GET(framework::VarDesc *, y_var_ptr); auto x_shape = x_var->GetShape(); auto y_shape = y_var->GetShape(); size_t x_rank = x_shape.size(); size_t y_rank = y_shape.size(); PADDLE_ENFORCE_EQ(x_rank, y_rank, platform::errors::InvalidArgument( "The two input tensor's dimension should be equal" "But received first input tensor's dimension is %d, " "and another input tensor's dimension is %d", x_rank, y_rank)); PADDLE_ENFORCE_EQ(x_rank == 2 || x_rank == 3, true, platform::errors::InvalidArgument( "The input tensor's dimension should be 2 or 3" "But received input tensor's dimension is %d", x_rank)); PADDLE_ENFORCE_EQ( x_shape[x_rank - 1], y_shape[y_rank - 2], platform::errors::InvalidArgument( "Invalid shape for matmul, the last dimension of first input and " "the penultimate dimension for the second input should be same." "But received %d and %d.", x_shape[x_rank - 1], y_shape[y_rank - 2])); if (x_rank == 2) { std::vector z_shape{x_shape[x_rank - 2], y_shape[y_rank - 1]}; BOOST_GET(framework::VarDesc *, z_var_ptr)->SetShape(z_shape); } else { PADDLE_ENFORCE_EQ(x_shape[0], y_shape[0], platform::errors::InvalidArgument( "Invalid shape for matmul when input tensor's " "dimension is 3, the first dimension of first " "input and the second input should be same." "But received %d and %d.", x_shape[0], y_shape[0])); std::vector z_shape{x_shape[0], x_shape[x_rank - 2], y_shape[y_rank - 1]}; BOOST_GET(framework::VarDesc *, z_var_ptr)->SetShape(z_shape); } } }; class MatmulPrimOpVarTypeInference : public framework::StaticGraphVarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { auto x_name = Input(ctx, "X")[0]; auto y_name = Input(ctx, "Y")[0]; auto z_name = Output(ctx, "Z")[0]; auto x_type = GetType(ctx, x_name); auto y_type = GetType(ctx, y_name); auto x_dtype = GetDataType(ctx, x_name); auto y_dtype = GetDataType(ctx, y_name); PADDLE_ENFORCE_EQ(x_type, y_type, platform::errors::InvalidArgument( "The type of two input tensor should be same, " "but get %d and %d", x_type, y_type)); PADDLE_ENFORCE_EQ(x_dtype, y_dtype, platform::errors::InvalidArgument( "The datatype of two input tensor should be same, " "but get %d and %d", x_dtype, y_dtype)); SetType(ctx, z_name, x_type); SetDataType(ctx, z_name, x_dtype); } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR(matmul_p, paddle::operators::MatmulPrimOp, paddle::operators::MatmulPrimOpMaker, paddle::operators::MatmulPrimOpShapeInference, paddle::operators::MatmulPrimOpVarTypeInference);