// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" namespace paddle { namespace framework { class InferShapeContext; class VarDesc; } // namespace framework } // namespace paddle namespace paddle { namespace operators { class BroadcastPrimOp : public framework::OperatorBase { public: BroadcastPrimOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { PADDLE_THROW(platform::errors::Unimplemented( "Prim operator broadcast_p should not be excuted directly")); } }; class BroadcastPrimOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of broadcast_p op."); AddOutput("Y", "(Tensor), The output tensor of broadcast_p op."); AddAttr>( "shape", "(std::vector) Target shape of broadcast_p operator."); AddComment(R"DOC( Autograd primitive broadcast_p operator. )DOC"); } }; static void CheckShapeValid(const std::vector &x_shape, const std::vector &target_shape) { size_t x_rank = x_shape.size(); size_t target_rank = target_shape.size(); PADDLE_ENFORCE_GE(target_rank, x_rank, platform::errors::InvalidArgument( "The rank of target shape should be greater than or " "equal to input tensor's dimensions, " "but received %d and %d", target_rank, x_rank)); std::vector::const_iterator it = target_shape.begin(); for (size_t i = 0; i < x_rank; i++, it++) { if (x_shape[i] != 1) { it = std::find(it, target_shape.end(), x_shape[i]); } PADDLE_ENFORCE_EQ( it != target_shape.end(), true, platform::errors::InvalidArgument( "Invalid shape, can not broadcast input tensor into target shape," "the first dismatching shape %d is shape of input tensor at " "dimension %d", x_shape[i], i)); } } class BroadcastPrimOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; framework::InferShapeVarPtr y_var_ptr = ctx->GetOutputVarPtrs("Y")[0]; framework::VarDesc *x_var = BOOST_GET(framework::VarDesc *, x_var_ptr); auto x_shape = x_var->GetShape(); auto target_shape = ctx->Attrs().Get>("shape"); CheckShapeValid(x_shape, target_shape); BOOST_GET(framework::VarDesc *, y_var_ptr)->SetShape(target_shape); } }; class BroadcastPrimOpVarTypeInference : public framework::StaticGraphVarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { auto x_name = Input(ctx, "X")[0]; auto y_name = Output(ctx, "Y")[0]; SetType(ctx, y_name, GetType(ctx, x_name)); SetDataType(ctx, y_name, GetDataType(ctx, x_name)); } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR(broadcast_p, paddle::operators::BroadcastPrimOp, paddle::operators::BroadcastPrimOpMaker, paddle::operators::BroadcastPrimOpShapeInference, paddle::operators::BroadcastPrimOpVarTypeInference);