/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/operators/detection/poly_util.h" namespace paddle { namespace operators { template bool SortScorePairDescend(const std::pair& pair1, const std::pair& pair2) { return pair1.first > pair2.first; } template static inline void GetMaxScoreIndex( const std::vector& scores, const T threshold, int top_k, std::vector>* sorted_indices) { for (size_t i = 0; i < scores.size(); ++i) { if (scores[i] > threshold) { sorted_indices->push_back(std::make_pair(scores[i], i)); } } // Sort the score pair according to the scores in descending order std::stable_sort(sorted_indices->begin(), sorted_indices->end(), SortScorePairDescend); // Keep top_k scores if needed. if (top_k > -1 && top_k < static_cast(sorted_indices->size())) { sorted_indices->resize(top_k); } } template static inline T BBoxArea(const T* box, const bool normalized) { if (box[2] < box[0] || box[3] < box[1]) { // If coordinate values are is invalid // (e.g. xmax < xmin or ymax < ymin), return 0. return static_cast(0.); } else { const T w = box[2] - box[0]; const T h = box[3] - box[1]; if (normalized) { return w * h; } else { // If coordinate values are not within range [0, 1]. return (w + 1) * (h + 1); } } } template static inline T JaccardOverlap(const T* box1, const T* box2, const bool normalized) { if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] || box2[3] < box1[1]) { return static_cast(0.); } else { const T inter_xmin = std::max(box1[0], box2[0]); const T inter_ymin = std::max(box1[1], box2[1]); const T inter_xmax = std::min(box1[2], box2[2]); const T inter_ymax = std::min(box1[3], box2[3]); T norm = normalized ? static_cast(0.) : static_cast(1.); T inter_w = inter_xmax - inter_xmin + norm; T inter_h = inter_ymax - inter_ymin + norm; const T inter_area = inter_w * inter_h; const T bbox1_area = BBoxArea(box1, normalized); const T bbox2_area = BBoxArea(box2, normalized); return inter_area / (bbox1_area + bbox2_area - inter_area); } } template T PolyIoU(const T* box1, const T* box2, const size_t box_size, const bool normalized) { T bbox1_area = PolyArea(box1, box_size, normalized); T bbox2_area = PolyArea(box2, box_size, normalized); T inter_area = PolyOverlapArea(box1, box2, box_size, normalized); if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) { // If coordinate values are invalid // if area size <= 0, return 0. return T(0.); } else { return inter_area / (bbox1_area + bbox2_area - inter_area); } } template static inline std::vector> GetSortedScoreIndex( const std::vector& scores) { std::vector> sorted_indices; sorted_indices.reserve(scores.size()); for (size_t i = 0; i < scores.size(); ++i) { sorted_indices.emplace_back(scores[i], i); } // Sort the score pair according to the scores in descending order std::stable_sort(sorted_indices.begin(), sorted_indices.end(), [](const std::pair& a, const std::pair& b) { return a.first < b.first; }); return sorted_indices; } template static inline framework::Tensor VectorToTensor( const std::vector& selected_indices, int selected_num) { framework::Tensor keep_nms; keep_nms.Resize({selected_num}); auto* keep_data = keep_nms.mutable_data(platform::CPUPlace()); for (int i = 0; i < selected_num; ++i) { keep_data[i] = selected_indices[i]; } return keep_nms; } template framework::Tensor NMS(const platform::DeviceContext& ctx, framework::Tensor* bbox, framework::Tensor* scores, T nms_threshold, float eta, bool pixel_offset = true) { int64_t num_boxes = bbox->dims()[0]; // 4: [xmin ymin xmax ymax] int64_t box_size = bbox->dims()[1]; std::vector scores_data(num_boxes); std::copy_n(scores->data(), num_boxes, scores_data.begin()); std::vector> sorted_indices = GetSortedScoreIndex(scores_data); std::vector selected_indices; int selected_num = 0; T adaptive_threshold = nms_threshold; const T* bbox_data = bbox->data(); bool normalized = pixel_offset ? false : true; while (sorted_indices.size() != 0) { int idx = sorted_indices.back().second; bool flag = true; for (int kept_idx : selected_indices) { if (flag) { T overlap = JaccardOverlap(bbox_data + idx * box_size, bbox_data + kept_idx * box_size, normalized); flag = (overlap <= adaptive_threshold); } else { break; } } if (flag) { selected_indices.push_back(idx); ++selected_num; } sorted_indices.erase(sorted_indices.end() - 1); if (flag && eta < 1 && adaptive_threshold > 0.5) { adaptive_threshold *= eta; } } return VectorToTensor(selected_indices, selected_num); } } // namespace operators } // namespace paddle