// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/fluid/operators/reduce_ops/reduce_op.h" namespace paddle { namespace operators { // use for loop to speed up Eigen broadcast. 4 timer faster then broadcast template class ReduceSumGradKernel : public framework::OpKernel { public: void ComputeFromInput(const Tensor* input2, const framework::ExecutionContext& context) const { auto dims = context.Attr>("dim"); auto* input0 = context.Input("X"); auto* output = context.Output(framework::GradVarName("X")); output->mutable_data(context.GetPlace()); const auto* input2_d = input2->data(); auto* output_d = output->data(); // handle reduce_all if (input2->dims().size() == 1 && input2->dims()[0] == 1) { for (int64_t i = 0; i < framework::product(input0->dims()); ++i) { output_d[i] = input2_d[0]; } return; } // handle reduce by one dimension int reduce_dim_index = dims[0]; if (reduce_dim_index < 0) { reduce_dim_index += input0->dims().size(); } auto& input_dim = input0->dims(); int64_t before_dim = 1; for (int i = 0; i < reduce_dim_index; ++i) { before_dim *= input_dim[i]; } int64_t reduce_dim = input_dim[reduce_dim_index]; int64_t after_dim = 1; for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) { after_dim *= input_dim[i]; } for (int64_t i = 0; i < before_dim; ++i) { for (int64_t j = 0; j < reduce_dim; ++j) { for (int64_t k = 0; k < after_dim; ++k) { output_d[i * reduce_dim * after_dim + j * after_dim + k] = input2_d[i * after_dim + k]; } } } } void Compute(const framework::ExecutionContext& context) const override { auto dims = context.Attr>("dim"); if (context.GetPlace().GetType() == platform::CPUPlace().GetType() && dims.size() == 1) { int in_dtype = context.Attr("in_dtype"); if (in_dtype >= 0) { Tensor tmp_tensor; auto* pre_input = context.Input(framework::GradVarName("Out")); auto in_kernel_type = framework::OpKernelType(pre_input->type(), context.GetPlace()); auto out_kernel_type = framework::OpKernelType( static_cast(in_dtype), context.GetPlace()); framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input, &tmp_tensor); ComputeFromInput(&tmp_tensor, context); } else { auto* input2 = context.Input(framework::GradVarName("Out")); ComputeFromInput(input2, context); } return; } // default use Eigen broadcast ReduceGradKernel kernel; kernel.Compute(context); } }; struct SumFunctor { template void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) { y->device(place) = x->sum(dim); } }; struct SumGradFunctor { template void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy, const Dim& dim, int size) { dx->device(place) = dy->broadcast(dim); } }; } // namespace operators } // namespace paddle