// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/new_executor/data_transfer.h" #include "paddle/fluid/framework/convert_utils.h" namespace paddle { namespace framework { namespace interpreter { bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var, const OpKernelType& expected_kernel_key, const std::string& var_name, std::string* new_var_name, std::vector* op_func_nodes, bool use_local_scope, bool is_fetch_v2) { bool is_transferred = false; auto* src_var_name = &var_name; Scope* local_scope = use_local_scope ? var_scope_->GetMutableLocalScope() : var_scope_->GetMutableScope(); // 1. layout transform if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) { auto op = TransferLayout( *src_var_name, new_var_name, kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_, var_scope_, local_scope, is_fetch_v2); if (op) { RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes); } // update src_var_name src_var_name = new_var_name; is_transferred = true; } // 2. dype transform if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) { auto op = TransferDtype( *src_var_name, new_var_name, kernel_type_for_var.data_type_, expected_kernel_key.data_type_, var_scope_, local_scope); if (op) { RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes); } // update src_var_name src_var_name = new_var_name; is_transferred = true; } // 3. device transform if (need_device_transform(kernel_type_for_var, expected_kernel_key)) { auto src_place = kernel_type_for_var.place_; auto dst_place = expected_kernel_key.place_; auto op = TransferDevice(*src_var_name, new_var_name, src_place, dst_place, var_scope_, local_scope); if (op) { RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes); } is_transferred = true; } return is_transferred; } void DataTranferHelper::RunAndConstructShareNode( const std::string& src_var_name, const std::string& dst_var_name, std::vector* op_func_nodes) { VariableNameMap in_name_map = {{"X", {src_var_name}}}; VariableNameMap out_name_map = {{"Out", {dst_var_name}}}; AttributeMap attr_map; std::string op_type("share_data"); auto& op_info = OpInfoMap::Instance().Get(op_type); auto op = std::shared_ptr( op_info.Creator()(op_type, in_name_map, out_name_map, attr_map)); VLOG(3) << string::Sprintf("Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name); RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes); } void DataTranferHelper::RunAndConstructOpFuncNode( const std::shared_ptr& op, const std::string& var_name, const std::string& new_var_name, std::vector* new_op_func_nodes) { auto& op_type = op->Type(); // 1. Construct RuntimeContext RuntimeContext runtime_context({}, {}); runtime_context.inputs["X"] = {var_scope_->Var(var_name)}; runtime_context.outputs["Out"] = {var_scope_->Var(new_var_name)}; InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context); // 2. Execute infer shape and choose kernel auto& all_op_kernels = OperatorWithKernel::AllOpKernels(); op.get()->Info().infer_shape_(&infer_shape_ctx); auto kernels_iter = all_op_kernels.find(op_type); PADDLE_ENFORCE_NE(kernels_iter, all_op_kernels.end(), platform::errors::Unavailable( "There are no kernels which are registered in " "the %s operator.", op_type)); OpKernelMap& kernels = kernels_iter->second; platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place_); Scope scope; auto exec_ctx = ExecutionContext(*op, scope, *dev_ctx, runtime_context); auto expected_kernel_key = dynamic_cast(op.get()) ->GetExpectedKernelType(exec_ctx); auto kernel_iter = kernels.find(expected_kernel_key); // 3. Execute transfer op and construct OpFuncNode OpFuncNode new_op_func_node; new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)}; new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)}; new_op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second); new_op_func_node.kernel_func_(exec_ctx); // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them // as kQueueSync and execute them in thread pool. new_op_func_node.type_ = OpFuncType::kQueueSync; new_op_func_node.dev_ctx_ = dev_ctx; new_op_func_node.operator_base_ = op; VLOG(3) << "Run " << op_type << " done."; new_op_func_nodes->emplace_back(std::move(new_op_func_node)); } // Var is initialized && var contains tensor && tensor is initialized bool IsTensorOfVarInitialized(Variable* var) { if (var->IsInitialized()) { if (var->IsType() || var->IsType()) { return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized(); } else if (var->IsType()) { return static_cast(&(var->Get()[0])) ->IsInitialized(); } } return false; } std::shared_ptr TransferLayout( const std::string& var_name, std::string* new_var_name, DataLayout in_layout, DataLayout out_layout, VariableScope* var_scope, framework::Scope* local_scope, bool is_fetch_v2) { #ifdef PADDLE_WITH_MKLDNN // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc if (in_layout == framework::DataLayout::kMKLDNN && var_name == framework::GradVarName("Filter") && is_fetch_v2) { out_layout = framework::DataLayout::kNCHW; } #endif // 1. Generate new_var_name and Initialize it *new_var_name = var_name + "_layout_" + std::to_string(static_cast(in_layout)) + "_" + std::to_string(static_cast(out_layout)); if (var_scope->HasVar(*new_var_name) && IsTensorOfVarInitialized(var_scope->Var(*new_var_name))) { // already has same var VLOG(4) << "Use cached variable: " << *new_var_name; return nullptr; } auto* ptr = local_scope->Var(*new_var_name); auto var_type = var_scope->Var(var_name)->Type(); InitializeVariable(ptr, static_cast(var_type)); VLOG(3) << "Create Variable " << *new_var_name << " locally, which pointer is " << ptr << "Variable Type " << var_type; var_scope->SetVarDesc(*new_var_name, nullptr); // 2. Construct VariableNameMap VariableNameMap in_name_map = {{"X", {var_name}}}; VariableNameMap out_name_map = {{"Out", {*new_var_name}}}; AttributeMap attr_map = {{"src_layout", static_cast(in_layout)}, {"dst_layout", static_cast(out_layout)}}; // 3. Create transfer_layout_op std::string op_type("transfer_layout"); auto& op_info = OpInfoMap::Instance().Get(op_type); auto op = std::shared_ptr( op_info.Creator()(op_type, in_name_map, out_name_map, attr_map)); VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).", op_type, var_name, in_layout, *new_var_name, out_layout); return op; } std::shared_ptr TransferDtype(const std::string& var_name, std::string* new_var_name, proto::VarType::Type in_dtype, proto::VarType::Type out_dtype, VariableScope* var_scope, framework::Scope* local_scope) { // 1. Generate new_var_name and Initialize it *new_var_name = var_name + "_dtype_" + std::to_string(static_cast(in_dtype)) + "_" + std::to_string(static_cast(out_dtype)); if (var_scope->HasVar(*new_var_name) && IsTensorOfVarInitialized(var_scope->Var(*new_var_name))) { // already has same var VLOG(4) << "Use cached variable: " << *new_var_name; return nullptr; } auto* ptr = local_scope->Var(*new_var_name); auto var_type = var_scope->Var(var_name)->Type(); InitializeVariable(ptr, static_cast(var_type)); VLOG(3) << "Create Variable " << *new_var_name << " locally, which pointer is " << ptr << "Variable Type " << var_type; var_scope->SetVarDesc(*new_var_name, nullptr); // 2. Construct VariableNameMap VariableNameMap in_name_map = {{"X", {var_name}}}; VariableNameMap out_name_map = {{"Out", {*new_var_name}}}; AttributeMap attr_map; attr_map["in_dtype"] = static_cast(in_dtype); attr_map["out_dtype"] = static_cast(out_dtype); // NOTE(Aurelius84): In whice case use_mkldnn = true? attr_map["use_mkldnn"] = false; // 3. Create transfer_dtype_op std::string op_type("transfer_dtype"); auto& op_info = OpInfoMap::Instance().Get(op_type); auto op = std::shared_ptr( op_info.Creator()(op_type, in_name_map, out_name_map, attr_map)); VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type, var_name, DataTypeToString(in_dtype), *new_var_name, DataTypeToString(out_dtype)); return op; } std::shared_ptr TransferDevice(const std::string& var_name, std::string* new_var_name, const platform::Place& src_place, const platform::Place& dst_place, VariableScope* var_scope, framework::Scope* local_scope) { // 1. Generate new_var_name and Initialize it *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" + dst_place.DebugString(); if (var_scope->HasVar(*new_var_name) && IsTensorOfVarInitialized(var_scope->Var(*new_var_name))) { // already has same var VLOG(4) << "Use cached variable: " << *new_var_name; return nullptr; } auto* ptr = local_scope->Var(*new_var_name); auto var_type = var_scope->Var(var_name)->Type(); InitializeVariable(ptr, static_cast(var_type)); VLOG(3) << "Create Variable " << *new_var_name << " locally, which pointer is " << ptr << "Variable Type " << var_type; var_scope->SetVarDesc(*new_var_name, nullptr); // 2. Construct VariableNameMap VariableNameMap in_name_map = {{"X", {var_name}}}; VariableNameMap out_name_map = {{"Out", {*new_var_name}}}; int dst_place_type = platform::is_cpu_place(dst_place) ? 0 : platform::is_gpu_place(dst_place) ? 1 : -1; AttributeMap attr_map = {{"dst_place_type", dst_place_type}}; // 3. Create memcpy_d2h_op or memcpy_h2d_op std::string op_type = get_memcpy_type(src_place, dst_place); auto& op_info = OpInfoMap::Instance().Get(op_type); auto op = std::shared_ptr( op_info.Creator()(op_type, in_name_map, out_name_map, attr_map)); VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type, var_name, src_place, *new_var_name, dst_place); return op; } void ApplyDataTransform(const OpKernelType& expected_kernel_key, const platform::Place& place, VariableValueMap* ins_map_temp, VariableValueMap* outs_map_temp, VariableScope* var_scope, OpFuncNode* op_func_node, std::vector* new_op_func_nodes, bool use_local_scope) { auto op_base = op_func_node->operator_base_.get(); PADDLE_ENFORCE_NOT_NULL(op_base, platform::errors::PreconditionNotMet( "op_base is null, please pass a valid " "op_base in apply_data_transform.")); VariableNameMap new_ins(op_base->Inputs()); VariableNameMap new_outs(op_base->Outputs()); // record the no need transform variable index. std::unordered_set no_data_transform_index; const std::unordered_set* no_buffer_ins = nullptr; auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer(); if (no_buffer_inferer) { no_buffer_ins = &(no_buffer_inferer(op_base->Inputs(), op_base->Outputs(), op_base->Attrs())); if (no_buffer_ins->empty()) { no_buffer_ins = nullptr; } } bool transfered = false; DataTranferHelper data_transfer_helper(place, var_scope); for (auto& var_name_item : *ins_map_temp) { bool should_skip_input = no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0; for (size_t i = 0; i < var_name_item.second.size(); ++i) { auto var = var_name_item.second[i]; auto var_name = new_ins[var_name_item.first].at(i); const Tensor* tensor_in; std::string new_var_name; bool is_transferred = false; if (var->IsType() || var->IsType()) { tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var); } else if (var->IsType()) { if (var->Get().size() == 0) { continue; } tensor_in = static_cast(&(var->Get()[0])); } else { continue; } // special case if (!tensor_in->IsInitialized()) { if (should_skip_input == true) { #ifdef PADDLE_WITH_MKLDNN // Var without buffer may be needed // for some situation like InferShape(). // In this situation We cannot skip Var analysis, as // MKL-DNN shape of Var may differ from kNHWC Var // In such situation corressponding resized Var // has to be created and registered if ((tensor_in->layout() == DataLayout::kMKLDNN) && (var->IsType() == true) && (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) && (paddle::platform::MKLDNNDeviceContext::tls() .get_cur_paddle_data_layout() == DataLayout::kNHWC)) { VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , " "but kNHWC layout" << var_name_item.first << " in Operator " << op_base->Type(); Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope() : var_scope->GetMutableScope(); auto op = TransferLayout( var_name, &new_var_name, tensor_in->layout(), DataLayout::kNHWC, var_scope, local_scope, op_base->Type() == "fetch_v2"); if (op) { data_transfer_helper.RunAndConstructOpFuncNode( op, var_name, new_var_name, new_op_func_nodes); } is_transferred = true; } else { VLOG(7) << "Skip scanning input " << var_name_item.first << " in Operator " << op_base->Type(); } #endif } else { continue; } } else { auto kernel_type_for_var = static_cast(op_base) ->GetKernelTypeForVar(var_name_item.first, *tensor_in, expected_kernel_key); // apply data transform is_transferred = data_transfer_helper.apply( kernel_type_for_var, expected_kernel_key, var_name, &new_var_name, new_op_func_nodes, use_local_scope, op_base->Type() == "fetch_v2"); } if (is_transferred) { transfered = true; // update RuntimeContext.inputs and original op_func_node inputs op_func_node->input_index[var_name_item.first][i] = var_scope->VarId(new_var_name); var_name_item.second[i] = var_scope->Var(new_var_name); new_ins[var_name_item.first][i] = new_var_name; for (auto& pair : new_outs) { for (size_t j = 0; j < pair.second.size(); ++j) { VLOG(4) << pair.second[j] << " " << var_name; if (pair.second[j] == var_name) { VLOG(4) << "Found inplace between input(" << var_name_item.first << ") and output(" << pair.first << "), the variable name is " << var_name; (*outs_map_temp)[pair.first][j] = var_scope->Var(new_var_name); new_outs[pair.first][j] = new_var_name; op_func_node ->inplace_back_map[var_scope->GetIdByName(new_var_name)] = var_scope->GetIdByName(var_name); op_func_node->output_index[pair.first][j] = var_scope->VarId(new_var_name); } } } // NOTE(Aurelius84): avoid deepcopy twice if we already insert data // transfer op. if (op_base->Type() == "fetch_v2") { op_base->SetAttr("deepcopy", false); } } else { // record no need data transformer input var_id VLOG(3) << op_base->Type() << " found no data_transform var: " << var_name << " with id: " << var_scope->VarId(var_name); no_data_transform_index.emplace(var_scope->VarId(var_name)); } } } if (transfered) { // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent // with instruction. (hot fix, it is not good design here) op_func_node->operator_base_ = std::shared_ptr(framework::OpRegistry::CreateOp( op_base->Type(), new_ins, new_outs, op_base->Attrs())); } op_func_node->no_data_transform_index = std::move(no_data_transform_index); } std::string get_memcpy_type(const platform::Place& src_place, const platform::Place& dst_place) { PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place), false, platform::errors::PreconditionNotMet( "Required src_place shall be different with dst_place, " "but received same place: %s", src_place)); if (platform::is_gpu_place(dst_place)) { return kMemcpyH2D; } else if (platform::is_gpu_place(src_place)) { return kMemcpyD2H; } else { PADDLE_THROW(platform::errors::PreconditionNotMet( "Not support Memcpy typ : %s -> %s", src_place, dst_place)); } } void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node, const platform::Place& place, const VariableNameMap& out_names, VariableValueMap* out_vars, VariableScope* var_scope, std::vector* op_func_nodes, framework::Scope* local_scope) { DataTranferHelper data_transfer_helper(place, var_scope); for (auto& var_name_item : out_names) { std::vector& vars = out_vars->at(var_name_item.first); for (size_t i = 0; i < var_name_item.second.size(); ++i) { // 1. find grad_var & check whether is complex tensor auto var_name = var_name_item.second[i]; auto orig_var_name = framework::GradOriginalVarName(var_name); // only focus on gradient var if (var_name == orig_var_name) { VLOG(3) << "skip " << var_name << " with same name as " << orig_var_name; continue; } auto* grad_var = vars[i]; // skip nullptr var if (grad_var == nullptr) { VLOG(3) << "skip grad_var with nullptr"; continue; } // don't process LoDTensorArray temporarily, // add support if necessary for complex number calculations in the future if (!framework::VarIsTensor(*grad_var)) { VLOG(3) << "skip grad_var with LoDTensorArray type"; continue; } auto* grad_tensor = framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var); // skip nullptr tensor if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) { VLOG(3) << "skip with grad_tensor not IsInitialized"; continue; } // only focus on complex dtype now auto src_type = framework::TransToProtoVarType(grad_tensor->dtype()); if (!framework::IsComplexType(src_type)) { VLOG(3) << "skip grad_tensor with not complexType"; continue; } // 2. find forward var & check whether need to cast auto* var = var_scope->FindVar(orig_var_name); // if forward var not exists, do nothing if (var == nullptr) { VLOG(3) << "skip " << orig_var_name << " with not found in var_scope"; continue; } if (!framework::VarIsTensor(*var)) { VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray."; continue; } const auto* tensor = framework::GetLoDTensorOrSelectedRowsValueFromVar(*var); PADDLE_ENFORCE_NOT_NULL( tensor, platform::errors::Unavailable( "Forward tensor is nullptr when handle complex data to real.")); // only need record type, the allocation may have been released auto dst_type = framework::TransToProtoVarType(tensor->dtype()); // only focus on real dtype and need casting if (framework::IsComplexType(dst_type)) { continue; } // 3. cast complex grad to real grad inplacely VLOG(3) << "Transform " << framework::DataTypeToString(src_type) << " var `" << var_name << "` to " << framework::DataTypeToString(dst_type) << " real var in static graph."; // NOTE(Aurelius84): Consider to define a complex2real op to deal this // case. std::string new_var_name; auto op = TransferDtype(var_name, &new_var_name, src_type, dst_type, var_scope, local_scope); data_transfer_helper.RunAndConstructOpFuncNode(op, var_name, new_var_name, op_func_nodes); data_transfer_helper.RunAndConstructShareNode(new_var_name, var_name, op_func_nodes); } } } } // namespace interpreter } // namespace framework } // namespace paddle