# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest from test_fusion_lstm_op import fc, ACTIVATION def attention_lstm( x, # T x M lod, # 1 x N h0, # N x D c0, # N x D fcws, # (M+D) x 1, 1x1 fcbs, # 1 x 1, 1x1 w, # (M+D) x 4D b, # 1 x 4D act_gate, act_cell, act_cand): hidden cell return hidden, cell class TestAttentionLSTMOp(OpTest): def set_conf(self): self.lod = [[3]] def setUp(self): self.op_type = 'attention_lstm' self.lod = [[3]] self.M = 30 self.D = 15 self.has_initial_hidden = True self.act_gate = 'sigmoid' self.act_cell = 'tanh' self.act_cand = 'tanh' self.set_conf() T = sum(self.lod[0]) bs = len(self.lod[0]) x = np.random.normal(size=(T, self.M)).astype('float32') c0 = np.random.normal(size=(bs, self.D)).astype('float32') if self.has_initial_hidden: h0 = np.random.normal(size=(bs, self.D)).astype('float32') else: h0 = np.zeros((bs, self.D)).astype('float32') fcw1 = np.random.normal(size=(self.M + self.D, 1)).astype('float32') fcb1 = np.random.normal(size=(1, 1)).astype('float32') fcw2 = np.random.normal(size=(1, 1)).astype('float32') fcb2 = np.random.normal(size=(1, 1)).astype('float32') # lstm weight and bias w = np.random.normal(size=(self.M + self.D, self.D * 4)).astype('float32') b = np.random.normal(size=(1, self.D * 4)).astype('float32') h, c = attention_lstm(x, self.lod, h0, c0, [fcw1, fcw2], [fcb1, fcb2], ACTIVATION[self.act_gate], ACTIVATION[self.act_cell], ACTIVATION[self.act_cand]) self.inputs = { 'X': (x, self.lod), 'C0': c0, 'AttentionWeight': fcw1, 'AttentionBias': fcb1, 'AttentionScalar': fcw2, 'AttentionScalarBias': fcb2, 'LSTMWeight': w, 'LSTMBias': b } if self.has_initial_hidden: self.inputs['H0'] = h0 self.outputs = { 'Hidden': (h, self.lod), 'Cell': (c, self.lod), } self.attrs = { 'gate_activation': self.act_gate, 'cell_activation': self.act_cell, 'candidate_activation': self.act_cand } def test_check_output(self): self.check_output() class TestAttentionOpNonInit(TestAttentionLSTMOp): def set_conf(self): self.has_initial_hidden = False class TestAttentionOpMD1(TestAttentionLSTMOp): def set_conf(self): self.M = 36 self.D = 8 class TestAttentionOpMD2(TestAttentionLSTMOp): def set_conf(self): self.M = 8 self.D = 8 class TestAttentionOpMD3(TestAttentionLSTMOp): def set_conf(self): self.M = 15 self.D = 30 class TestAttentionOpBS1(TestAttentionLSTMOp): def set_conf(self): self.lod = [[5]] self.M = 16 self.D = 32 class TestAttentionOpBS2(TestAttentionLSTMOp): def set_conf(self): self.lod = [[3, 6]] class TestAttentionOpBS5(TestAttentionLSTMOp): def set_conf(self): self.lod = [[3, 2, 4, 7, 5]] if __name__ == '__main__': unittest.main()