# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import copy import paddle from paddle.fluid.dygraph import guard from paddle.fluid.framework import default_main_program, Variable, _test_eager_guard import paddle.fluid.core as core from paddle.fluid.executor import Executor import paddle.fluid.io as io from paddle.fluid.initializer import ConstantInitializer import numpy as np paddle.enable_static() main_program = default_main_program() class ParameterChecks(unittest.TestCase): def test_parameter(self): shape = [784, 100] val = 1.0625 b = main_program.global_block() param = b.create_parameter(name='fc.w', shape=shape, dtype='float32', initializer=ConstantInitializer(val)) self.assertIsNotNone(param) self.assertEqual('fc.w', param.name) self.assertEqual((784, 100), param.shape) self.assertEqual(core.VarDesc.VarType.FP32, param.dtype) self.assertEqual(0, param.block.idx) exe = Executor(paddle.CPUPlace()) p = exe.run(main_program, fetch_list=[param])[0] np.testing.assert_array_equal(p, np.ones(shape) * val) p = io.get_parameter_value_by_name('fc.w', exe, main_program) np.testing.assert_array_equal(p, np.ones(shape) * val) def func_parambase(self): with guard(): linear = paddle.nn.Linear(10, 10) param = linear.weight memo = {} param_copy = copy.deepcopy(param, memo) self.assertEqual(param_copy.shape, param.shape) self.assertEqual(param_copy.type, param.type) self.assertEqual(param_copy.dtype, param.dtype) self.assertEqual(str(param_copy.place), str(param.place)) np.testing.assert_array_equal(param_copy.numpy(), param.numpy()) self.assertEqual(param_copy.optimize_attr, param.optimize_attr) self.assertEqual(param_copy.regularizer, param.regularizer) self.assertEqual(param_copy.do_model_average, param.do_model_average) self.assertEqual(param_copy.need_clip, param.need_clip) self.assertEqual(param_copy.is_distributed, param.is_distributed) pram_copy2 = copy.deepcopy(param, memo) self.assertEqual(id(param_copy), id(pram_copy2)) def test_parambase(self): with _test_eager_guard(): self.func_parambase() self.func_parambase() def func_exception(self): b = main_program.global_block() with self.assertRaises(ValueError): b.create_parameter(name='test', shape=None, dtype='float32', initializer=None) with self.assertRaises(ValueError): b.create_parameter(name='test', shape=[1], dtype=None, initializer=None) with self.assertRaises(ValueError): b.create_parameter(name='test', shape=[], dtype='float32', initializer=None) with self.assertRaises(ValueError): b.create_parameter(name='test', shape=[-1], dtype='float32', initializer=None) def func_parambase_to_vector(self): with guard(): initializer = paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(3.)) linear1 = paddle.nn.Linear(10, 15, initializer) vec = paddle.nn.utils.parameters_to_vector(linear1.parameters()) self.assertEqual(linear1.weight.shape, [10, 15]) self.assertEqual(linear1.bias.shape, [15]) self.assertTrue(isinstance(vec, Variable)) self.assertTrue(vec.shape, [165]) linear2 = paddle.nn.Linear(10, 15) paddle.nn.utils.vector_to_parameters(vec, linear2.parameters()) self.assertEqual(linear2.weight.shape, [10, 15]) self.assertEqual(linear2.bias.shape, [15]) np.testing.assert_array_equal(linear1.weight.numpy(), linear2.weight.numpy()) np.testing.assert_array_equal(linear1.bias.numpy(), linear2.bias.numpy()) self.assertTrue(linear2.weight.is_leaf, True) self.assertTrue(linear2.bias.is_leaf, True) def test_parambase_to_vector(self): with _test_eager_guard(): self.func_parambase_to_vector() self.func_parambase_to_vector() if __name__ == '__main__': unittest.main()