# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest class TestReshapeOp(OpTest): def setUp(self): ori_shape = (2, 25) new_shape = (5, 10) self.op_type = "reshape" self.inputs = {"X": np.random.random(ori_shape).astype("float32")} self.attrs = {"shape": new_shape} self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpDimInfer1(OpTest): def setUp(self): ori_shape = (5, 10) new_shape = (5, -1, 5) self.op_type = "reshape" self.inputs = {"X": np.random.random(ori_shape).astype("float32")} self.attrs = {"shape": new_shape} self.outputs = {"Out": self.inputs["X"].reshape(self.attrs["shape"])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpDimInfer2(OpTest): def setUp(self): ori_shape = (2, 2, 6) new_shape = (2, 0, 3, -1) infered_shape = (2, 2, 3, -1) self.op_type = "reshape" self.inputs = {"X": np.random.random(ori_shape).astype("float32")} self.attrs = {"shape": new_shape} self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpInplace(OpTest): def setUp(self): ori_shape = (2, 25) new_shape = (5, 10) self.op_type = "reshape" self.inputs = {"X": np.random.random(ori_shape).astype("float32")} self.attrs = {"shape": new_shape} self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpDimInferInplace1(OpTest): def setUp(self): ori_shape = (5, 10) new_shape = (5, -1, 5) self.op_type = "reshape" self.inputs = {"X": np.random.random(ori_shape).astype("float32")} self.attrs = {"shape": new_shape} self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpDimInferInplace2(OpTest): def setUp(self): ori_shape = (2, 2, 6) new_shape = (2, 0, 3, -1) infered_shape = (2, 2, 3, -1) self.op_type = "reshape" self.inputs = {"X": np.random.random(ori_shape).astype("float32")} self.attrs = {"shape": new_shape} self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpWithInputShape(OpTest): def setUp(self): ori_shape = (6, 5) new_shape = (0, -1, 5) actual_shape = (2, 3, 5) self.op_type = "reshape" self.inputs = { "X": np.random.random(ori_shape).astype("float32"), "Shape": np.array( actual_shape, dtype="int32") } self.attrs = {"shape": new_shape} self.outputs = {"Out": self.inputs["X"].reshape(actual_shape)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") if __name__ == "__main__": unittest.main()