/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/scale_op.h" #include #include namespace paddle { namespace operators { class ScaleOp : public framework::OperatorWithKernel { public: ScaleOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "scale"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "scale"); if (ctx->IsRuntime() && ctx->HasInput("ScaleTensor")) { auto scale = ctx->Inputs("ScaleTensor"); PADDLE_ENFORCE_EQ(scale.size(), 1, platform::errors::InvalidArgument( "Input(ScaleTensor) size must be 1, " "but received size is %d.", scale.size())); } ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->ShareLoD("X", /*->*/ "Out"); } }; class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Input tensor of scale operator."); AddInput("ScaleTensor", "(Tensor) If provided, use this as " "scale factor, this has a higher priority than " "attr(scale), the shape of this tensor MUST BE 1.") .AsDispensable(); AddOutput("Out", "(Tensor) Output tensor of scale operator."); AddComment(R"DOC( **Scale operator** Apply scaling and bias addition to the input tensor. if bias_after_scale=True: $$Out = scale*X + bias$$ else: $$Out = scale*(X + bias)$$ )DOC"); AddAttr("scale", "The scaling factor of the scale operator.") .SetDefault(1.0); AddAttr("bias", "The bias of the scale operator.").SetDefault(0.0); AddAttr( "bias_after_scale", "Apply bias addition after or before scaling. It is useful for " "numeric stability in some circumstances.") .SetDefault(true); } }; class ScaleOpVarTypeInference : public framework::VarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { ctx->SyncTypeAndDataType("X", "Out"); } }; template class ScaleGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr grad_op) const override { grad_op->SetType("scale"); grad_op->SetInput("X", this->OutputGrad("Out")); if (this->HasInput("ScaleTensor") > 0) { grad_op->SetInput("ScaleTensor", this->Input("ScaleTensor")); } grad_op->SetOutput("Out", this->InputGrad("X")); grad_op->SetAttr("scale", this->GetAttr("scale")); grad_op->SetAttr("bias", 0.0f); grad_op->SetAttr("bias_after_scale", true); } }; DECLARE_INPLACE_OP_INFERER(ScaleOpInplace, {"X", "Out"}); } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker, ops::ScaleGradMaker, ops::ScaleGradMaker, ops::ScaleOpVarTypeInference, ops::ScaleOpInplace); REGISTER_OP_CPU_KERNEL( scale, ops::ScaleKernel, ops::ScaleKernel, ops::ScaleKernel, ops::ScaleKernel, ops::ScaleKernel, ops::ScaleKernel, ops::ScaleKernel);