// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/kernels/host/fc_compute.h" #include #include #include "paddle/fluid/lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace host { TEST(fc_compute_naive, test) { TensorBase x, w, b, out, out1; const int batch_size = 2; x.Resize({batch_size, 3}); w.Resize({4, 3}); b.Resize({1, 4}); out.Resize({batch_size, 4}); out1.Resize({batch_size, 4}); auto x_data = x.mutable_data(); auto w_data = w.mutable_data(); auto b_data = b.mutable_data(); auto out_data = out.mutable_data(); auto out_data1 = out1.mutable_data(); for (int i = 0; i < product(x.dims()); i++) x_data[i] = i; for (int i = 0; i < product(w.dims()); i++) w_data[i] = i; for (int i = 0; i < product(b.dims()); i++) b_data[i] = i; fc_compute_naive(x_data, 3, batch_size, // w_data, 3, 4, // b_data, out_data); fc_compute_eigen(x_data, 3, batch_size, // w_data, 3, 4, // b_data, out_data1); for (int i = 0; i < product(out.dims()); i++) { EXPECT_NEAR(out_data[0], out_data1[0], 1e-6); } } TEST(fc_host, init) { FcCompute fc; ASSERT_EQ(fc.precision(), PRECISION(kFloat)); ASSERT_EQ(fc.target(), TARGET(kHost)); } TEST(fc_host, algorithm) { using matrix_t = Eigen::Matrix; using matrix_map_t = Eigen::Map; // dim 10, 20 std::vector input(10 * 20); std::vector w(20 * 20); std::vector output(10 * 20); Eigen::Map input_mat(input.data(), 10, 20); Eigen::Map weight_mat(w.data(), 20, 20); matrix_map_t output_mat(output.data(), 10, 20); output_mat = weight_mat.transpose() * input_mat; } TEST(fc_host, compute) { FcCompute fc; operators::FcParam param; TensorBase x; TensorBase w; TensorBase bias; TensorBase output; x.Resize({1, 10, 20}); w.Resize({20, 20}); bias.Resize({1, 10}); output.Resize({10, 20}); auto* x_data = x.mutable_data(); auto* w_data = w.mutable_data(); auto* bias_data = bias.mutable_data(); auto* output_data = output.mutable_data(); for (int i = 0; i < 10 * 20; i++) x_data[i] = i; for (int i = 0; i < 20 * 20; i++) w_data[i] = i; for (int i = 0; i < 10; i++) bias_data[i] = i; for (int i = 0; i < 10 * 20; i++) output_data[i] = 0; param.in_num_col_dims = 2; param.input = &x; param.w = &w; param.bias = &bias; param.output = &output; param.in_mat_dims = x.dims(); fc.SetParam(param); fc.Run(); LOG(INFO) << "x"; for (int i = 0; i < 10 * 20; i++) LOG(INFO) << x_data[i]; LOG(INFO) << "output:"; for (int i = 0; i < 10 * 20; i++) LOG(INFO) << output.data()[i]; } TEST(fc, retrive_op) { auto fc = KernelRegistry::Global().Create("fc"); ASSERT_TRUE(fc.get()); } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(fc, kHost, kFloat);