# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core from paddle.fluid.framework import _test_eager_guard class TestSparseCreate(unittest.TestCase): def test_create_coo_by_tensor(self): with _test_eager_guard(): non_zero_indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]] non_zero_elements = [1, 2, 3, 4, 5] dense_shape = [3, 4] dense_indices = paddle.to_tensor(non_zero_indices) dense_elements = paddle.to_tensor( non_zero_elements, dtype='float32') coo = paddle.sparse.sparse_coo_tensor( dense_indices, dense_elements, dense_shape, stop_gradient=False) assert np.array_equal(non_zero_indices, coo.non_zero_indices().numpy()) assert np.array_equal(non_zero_elements, coo.non_zero_elements().numpy()) def test_create_coo_by_np(self): with _test_eager_guard(): indices = [[0, 1, 2], [1, 2, 0]] values = [1.0, 2.0, 3.0] dense_shape = [2, 3] coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape) print(coo) assert np.array_equal(indices, coo.non_zero_indices().numpy()) assert np.array_equal(values, coo.non_zero_elements().numpy()) def test_create_csr_by_tensor(self): with _test_eager_guard(): non_zero_crows = [0, 2, 3, 5] non_zero_cols = [1, 3, 2, 0, 1] non_zero_elements = [1, 2, 3, 4, 5] dense_shape = [3, 4] dense_crows = paddle.to_tensor(non_zero_crows) dense_cols = paddle.to_tensor(non_zero_cols) dense_elements = paddle.to_tensor( non_zero_elements, dtype='float32') stop_gradient = False csr = paddle.sparse.sparse_csr_tensor( dense_crows, dense_cols, dense_elements, dense_shape, stop_gradient=stop_gradient) print(csr) def test_create_csr_by_np(self): with _test_eager_guard(): crows = [0, 2, 3, 5] cols = [1, 3, 2, 0, 1] values = [1, 2, 3, 4, 5] dense_shape = [3, 4] csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape) assert np.array_equal(crows, csr.non_zero_crows().numpy()) assert np.array_equal(cols, csr.non_zero_cols().numpy()) assert np.array_equal(values, csr.non_zero_elements().numpy()) def test_place(self): with _test_eager_guard(): place = core.CPUPlace() indices = [[0, 1], [0, 1]] values = [1.0, 2.0] dense_shape = [2, 2] coo = paddle.sparse.sparse_coo_tensor( indices, values, dense_shape, place=place) assert coo.place.is_cpu_place() assert coo.non_zero_elements().place.is_cpu_place() assert coo.non_zero_indices().place.is_cpu_place() crows = [0, 2, 3, 5] cols = [1, 3, 2, 0, 1] values = [1.0, 2.0, 3.0, 4.0, 5.0] csr = paddle.sparse.sparse_csr_tensor( crows, cols, values, [3, 5], place=place) assert csr.place.is_cpu_place() assert csr.non_zero_crows().place.is_cpu_place() assert csr.non_zero_cols().place.is_cpu_place() assert csr.non_zero_elements().place.is_cpu_place() def test_dtype(self): with _test_eager_guard(): indices = [[0, 1], [0, 1]] values = [1.0, 2.0] dense_shape = [2, 2] indices = paddle.to_tensor(indices, dtype='int32') values = paddle.to_tensor(values, dtype='float32') coo = paddle.sparse.sparse_coo_tensor( indices, values, dense_shape, dtype='float64') assert coo.dtype == paddle.float64 crows = [0, 2, 3, 5] cols = [1, 3, 2, 0, 1] values = [1.0, 2.0, 3.0, 4.0, 5.0] csr = paddle.sparse.sparse_csr_tensor( crows, cols, values, [3, 5], dtype='float16') assert csr.dtype == paddle.float16 def test_create_coo_no_shape(self): with _test_eager_guard(): indices = [[0, 1], [0, 1]] values = [1.0, 2.0] indices = paddle.to_tensor(indices, dtype='int32') values = paddle.to_tensor(values, dtype='float32') coo = paddle.sparse.sparse_coo_tensor(indices, values) assert [2, 2] == coo.shape class TestSparseConvert(unittest.TestCase): def test_to_sparse_coo(self): with _test_eager_guard(): x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]] non_zero_indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]] non_zero_elements = [1, 2, 3, 4, 5] dense_x = paddle.to_tensor(x) out = dense_x.to_sparse_coo(2) print(out) assert np.array_equal(out.non_zero_indices().numpy(), non_zero_indices) assert np.array_equal(out.non_zero_elements().numpy(), non_zero_elements) dense_tensor = out.to_dense() assert np.array_equal(dense_tensor.numpy(), x) def test_to_sparse_csr(self): with _test_eager_guard(): x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]] non_zero_crows = [0, 2, 3, 5] non_zero_cols = [1, 3, 2, 0, 1] non_zero_elements = [1, 2, 3, 4, 5] dense_x = paddle.to_tensor(x) out = dense_x.to_sparse_csr() print(out) assert np.array_equal(out.non_zero_crows().numpy(), non_zero_crows) assert np.array_equal(out.non_zero_cols().numpy(), non_zero_cols) assert np.array_equal(out.non_zero_elements().numpy(), non_zero_elements) dense_tensor = out.to_dense() print(dense_tensor) assert np.array_equal(dense_tensor.numpy(), x) if __name__ == "__main__": unittest.main()