/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { namespace analysis { using contrib::AnalysisConfig; struct Record { std::vector data; std::vector shape; }; Record ProcessALine(const std::string &line) { VLOG(3) << "process a line"; std::vector columns; split(line, '\t', &columns); CHECK_EQ(columns.size(), 2UL) << "data format error, should be \t"; Record record; std::vector data_strs; split(columns[0], ' ', &data_strs); for (auto &d : data_strs) { record.data.push_back(std::stof(d)); } std::vector shape_strs; split(columns[1], ' ', &shape_strs); for (auto &s : shape_strs) { record.shape.push_back(std::stoi(s)); } VLOG(3) << "data size " << record.data.size(); VLOG(3) << "data shape size " << record.shape.size(); return record; } void SetConfig(AnalysisConfig *cfg) { cfg->param_file = FLAGS_infer_model + "/__params__"; cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->use_gpu = false; cfg->device = 0; cfg->enable_ir_optim = true; cfg->specify_input_name = true; // TODO(TJ): fix fusion gru cfg->pass_builder()->DeletePass("fc_gru_fuse_pass"); } void SetInput(std::vector> *inputs) { PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data."); std::string line; std::ifstream file(FLAGS_infer_data); std::getline(file, line); auto record = ProcessALine(line); PaddleTensor input; input.shape = record.shape; input.dtype = PaddleDType::FLOAT32; size_t input_size = record.data.size() * sizeof(float); input.data.Resize(input_size); memcpy(input.data.data(), record.data.data(), input_size); std::vector input_slots; input_slots.assign({input}); (*inputs).emplace_back(input_slots); } // Easy for profiling independently. // ocr, mobilenet and se_resnext50 void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); if (use_mkldnn) { cfg.EnableMKLDNN(); } std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { std::string line; std::ifstream file(FLAGS_refer_result); std::getline(file, line); auto refer = ProcessALine(line); file.close(); auto &output = outputs.front(); size_t numel = output.data.length() / PaddleDtypeSize(output.dtype); CHECK_EQ(numel, refer.data.size()); for (size_t i = 0; i < numel; ++i) { CHECK_LT( fabs(static_cast(output.data.data())[i] - refer.data[i]), 1e-5); } } } TEST(Analyzer_vis, profile) { profile(); } #ifdef PADDLE_WITH_MKLDNN TEST(Analyzer_vis, profile_mkldnn) { profile(true /* use_mkldnn */); } #endif // Check the fuse status TEST(Analyzer_vis, fuse_statis) { AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); GetFuseStatis(predictor.get(), &num_ops); } // Compare result of NativeConfig and AnalysisConfig void compare(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); if (use_mkldnn) { cfg.EnableMKLDNN(); } std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } TEST(Analyzer_vis, compare) { compare(); } #ifdef PADDLE_WITH_MKLDNN TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); } #endif } // namespace analysis } // namespace inference } // namespace paddle