# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import re import functools import warnings import string from six.moves import cStringIO from paddle.fluid.proto import framework_pb2 from paddle.fluid.framework import OpProtoHolder, Variable from paddle.fluid.layer_helper import LayerHelper g_filer_attrs = ['op_role', 'op_role_var', 'op_namescope'] def _convert_(name): """ Formatting. Args: name: The name/alias This function takes in a name and converts it to a standard format of group1_group2. Where as per the regular expression, group1 can have alphabets and numbers and group2 has capital alphabets. """ s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def _get_inputs(op_type): op_proto = OpProtoHolder.instance().get_op_proto(op_type) inputs = dict() for ipt in op_proto.inputs: inputs[ipt.name] = ipt.comment return inputs def _get_outputs(op_type): op_proto = OpProtoHolder.instance().get_op_proto(op_type) outputs = {} for ipt in op_proto.outputs: outputs[ipt.name] = "" return outputs _two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$") _single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$") _two_bang_pattern_ = re.compile(r"!!([^!]+)!!") def escape_math(text): return _two_bang_pattern_.sub( r'$$\1$$', _single_dollar_pattern_.sub(r':math:`\1`', _two_dollar_pattern_.sub(r"!!\1!!", text))) def get_comment(op_type): op_proto = OpProtoHolder.instance().get_op_proto(op_type) comment_lines = op_proto.comment.split("\n") comment = "" for line in comment_lines: line = line.strip() if len(line) != 0: comment += escape_math(line) comment += " " elif len(comment) != 0: comment += "\n " return comment def _get_attrs(op_type): op_proto = OpProtoHolder.instance().get_op_proto(op_type) return op_proto.attrs def get_indent_space(indent, space_num=4): ret = "" for i in range(0, indent * space_num): ret += " " return ret def get_input_comments(op_type, indent=2): ret = "" inputs = _get_inputs(op_type) for t in inputs: ret += get_indent_space(2) + "%s (Type): %s\n" % (_convert_(t), inputs[t]) for t in _get_attrs(op_type): if t.name in g_filer_attrs: continue ret += get_indent_space(2) + "%s (%s): %s\n" % ( _convert_(t.name), t.type, _convert_(t.comment)) return ret def get_output_comments(op_type, indent=2): ret = "" for t in _get_outputs(op_type): ret += get_indent_space(2) + "output(${%s_type}): ${%s_comment}\n" % ( _convert_(t), _convert_(t)) return ret def get_func_args(op_type): ret = "" inputs = _get_inputs(op_type) for t in inputs: ret += "%s," % _convert_(t) for t in _get_attrs(op_type): if t.name in g_filer_attrs: continue default = re.findall("\(.+\, default (.+)\(?\)", t.comment) if len(default) > 0: #print(default[0]) ret += "{}={},".format(_convert_(t.name), default[0]) continue ret += "%s=," % _convert_(t.name) return ret.strip(',') def get_inputs(op_type): ret = "inputs={" inputs = _get_inputs(op_type) for t in inputs: ret += "'{}': {},".format(t, _convert_(t)) ret = ret.strip(",") ret += "}" if ret == "inputs={}": return "" return ret def get_outputs(op_type): ret = "outputs={" inputs = _get_outputs(op_type) for t in inputs: ret += "'{}': {},".format(t, _convert_(t)) ret = ret.strip(",") ret += "}" if ret == "inputs={}": return "" return ret def get_attrs(op_type): ret = "attrs={" for t in _get_attrs(op_type): if t.name in g_filer_attrs: continue ret += "'%s': %s," % (t.name, _convert_(t.name)) ret = ret.strip(",") ret += "}" return ret def get_outvars(op_type, indent=1): inputs = _get_inputs(op_type) ret = "" for t in _get_outputs(op_type): ret += get_indent_space( indent ) + "%s = helper.create_tmp_variable(dtype=helper.input_dtype('%s'))\n" % ( (_convert_(t), list(inputs)[0])) ret = ret.strip('\n') return ret def get_op_py(op_type): input_comments = get_input_comments(op_type) output_comments = get_output_comments(op_type) args = get_func_args(op_type) inputs = get_inputs(op_type) outputs = get_outputs(op_type) attrs = get_attrs(op_type) out_vars = get_outvars(op_type) comment = get_comment(op_type) code = """ def {op_type}({args}): \"\"\" {comment} Args: {input_comments} Returns: {output_comments} \"\"\" helper = LayerHelper('{op_type}', **locals()) {generated_outvar} helper.append_op( type='{op_type}', {inputs}, {outputs}, {attrs}) return out """.format( comment=comment, input_comments=input_comments.strip('\n'), output_comments=output_comments, args=args, generated_outvar=out_vars, op_type=op_type, inputs=inputs, outputs=outputs, attrs=attrs) return code print(get_op_py("uniform_random_batch_size_like")) #print(get_op_py("gaussian_random")) #print(get_op_py("sampling_id")) #print(get_op_py("gaussian_random_batch_size_like")) #print(get_op_py("sum")) #print(get_op_py("slice")) #print(get_op_py("shape")) #get_meta("linear_chain_crf")