// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/mean_all_kernel.h" #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template __global__ void MeanRunKernel(const T* in_data, T* out_data, int N) { using MT = typename dtype::MPTypeTrait::Type; int idx = blockDim.x * blockIdx.x + threadIdx.x; auto data = static_cast(in_data[0]); for (; idx < N; idx += blockDim.x * gridDim.x) { out_data[idx] = static_cast(data / (static_cast(N))); } } template void MeanAllGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, DenseTensor* x_grad) { PADDLE_ENFORCE_EQ(out_grad.numel(), 1, phi::errors::InvalidArgument( "Mean Gradient Input Tensor len should be 1. But " "received Out@Grad's elements num is %d.", out_grad.numel())); dev_ctx.template Alloc(x_grad); auto in_data = out_grad.data(); auto size_prob = x_grad->numel(); auto out_data = x_grad->data(); int threads = 512; int grid = (size_prob + threads - 1) / threads; auto stream = dev_ctx.stream(); MeanRunKernel<<>>(in_data, out_data, size_prob); } } // namespace phi PD_REGISTER_KERNEL(mean_all_grad, GPU, ALL_LAYOUT, phi::MeanAllGradKernel, float, double, phi::dtype::float16, phi::dtype::complex, phi::dtype::complex) {}