/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/solve_op.h" #include #include #include #include #include "paddle/fluid/framework/ddim.h" namespace paddle { namespace operators { using framework::OpKernelType; using framework::Tensor; class SolveOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Solve"); OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Solve"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Solve"); auto x_dims = ctx->GetInputDim("X"); auto y_dims = ctx->GetInputDim("Y"); std::vector x_dims_vec = paddle::framework::vectorize(ctx->GetInputDim("X")); std::vector y_dims_vec = paddle::framework::vectorize(ctx->GetInputDim("Y")); auto x_dims_n = x_dims_vec.size(); auto y_dims_n = y_dims_vec.size(); PADDLE_ENFORCE_GT(x_dims_n, 1, platform::errors::InvalidArgument( "The input tensor X's dimensions of SolveOp " "should be larger than 1. But received X's " "dimensions = %d, X's shape = [%s]", x_dims_n, x_dims)); PADDLE_ENFORCE_GE(y_dims_n, 1, platform::errors::InvalidArgument( "The input tensor Y's dimensions of SolveOp " "should be larger than or equal 1. But received Y's " "dimensions = %d, Y's shape = [%s]", y_dims_n, y_dims)); PADDLE_ENFORCE_EQ(x_dims[x_dims_n - 2], x_dims[x_dims_n - 1], platform::errors::InvalidArgument( "The inner-most 2 dimensions of Input(X) all should " "be square matrices " "But received X's shape[-2] = %d and shape[-1] = %d.", x_dims[x_dims_n - 2], x_dims[x_dims_n - 1])); bool x_broadcasted = false, y_broadcasted = false; bool trans_x = false, trans_y = false; if (x_dims_n == 1) { x_dims_vec.insert(x_dims_vec.begin(), 1); x_dims_n = 2; x_broadcasted = true; } if (y_dims_n == 1) { y_dims_vec.push_back(1); y_dims_n = 2; y_broadcasted = true; } size_t M, N; if (trans_x) { M = x_dims_vec[x_dims_n - 1]; } else { M = x_dims_vec[x_dims_n - 2]; } if (trans_y) { N = y_dims_vec[y_dims_n - 2]; } else { N = y_dims_vec[y_dims_n - 1]; } std::vector new_dims; if (x_dims_n >= y_dims_n) { new_dims.assign(x_dims_vec.begin(), x_dims_vec.end() - 2); } else { new_dims.assign(y_dims_vec.begin(), y_dims_vec.end() - 2); } if (!x_broadcasted) { new_dims.push_back(M); } if (!y_broadcasted) { new_dims.push_back(N); } if (x_broadcasted && y_broadcasted) { new_dims.push_back(1); } auto out_dims = framework::make_ddim(new_dims); ctx->SetOutputDim("Out", out_dims); ctx->ShareLoD("X", /*->*/ "Out"); } framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const { framework::LibraryType library = framework::LibraryType::kPlain; framework::DataLayout layout = framework::DataLayout::kAnyLayout; int customized_type_value = framework::OpKernelType::kDefaultCustomizedTypeValue; auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout, library, customized_type_value); } }; class SolveOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The first input tensor of solve op."); AddInput("Y", "(Tensor), The second input tensor of solve op."); AddOutput("Out", "(Tensor), The output tensor of solve op."); AddComment(R"DOC( Solve Operator. This operator is used to computes the solution of a square system of linear equations with a unique solution for input $X$ and $Y$. The equation is: $$Out = X^-1 * Y$$ )DOC"); } }; class SolveOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput { protected: std::unordered_map& GetInputOutputWithSameType() const override { static std::unordered_map m{{"X", /*->*/ "Out"}}; return m; } }; class SolveGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "solve"); OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "solve"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", "Out@GRAD", "solve"); // reuse the linalg.solve forward output OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "solve"); auto x_dims = ctx->GetInputDim("X"); auto y_dims = ctx->GetInputDim("Y"); auto x_grad_name = framework::GradVarName("X"); auto y_grad_name = framework::GradVarName("Y"); if (ctx->HasOutput(x_grad_name)) { ctx->SetOutputDim(x_grad_name, x_dims); } if (ctx->HasOutput(y_grad_name)) { ctx->SetOutputDim(y_grad_name, y_dims); } } }; template class SolveOpGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr retv) const override { retv->SetType("solve_grad"); retv->SetInput("X", this->Input("X")); retv->SetInput("Y", this->Input("Y")); retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); // reuse the linalg.solve forward output retv->SetInput("Out", this->Output("Out")); retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); retv->SetAttrMap(this->Attrs()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(solve, ops::SolveOp, ops::SolveOpMaker, ops::SolveOpInferVarType, ops::SolveOpGradMaker, ops::SolveOpGradMaker); REGISTER_OPERATOR(solve_grad, ops::SolveGradOp); REGISTER_OP_CPU_KERNEL( solve, ops::SolveKernel, ops::SolveKernel); REGISTER_OP_CPU_KERNEL( solve_grad, ops::SolveGradKernel, ops::SolveGradKernel);