# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import time import paddle.fluid as fluid from paddle.fluid import unique_name import paddle.fluid.core as core import paddle from paddle.fluid.layer_helper import LayerHelper from paddle.distributed import fleet from paddle.distributed.fleet.meta_optimizers.ascend import ascend_parser, ascend_optimizer from collections import namedtuple Block = namedtuple('Block', ['program']) Loss = namedtuple('Loss', ['block']) paddle.enable_static() OpRole = core.op_proto_and_checker_maker.OpRole OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName() OP_ROLE_VAR_KEY = core.op_proto_and_checker_maker.kOpRoleVarAttrName() role = fleet.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) def init_communicator(startup_program, main_program, current_endpoint, endpoints, ring_id): nranks = len(endpoints) other_endpoints = endpoints[:] other_endpoints.remove(current_endpoint) group_rank = endpoints.index(current_endpoint) assert group_rank >= 0 block = startup_program.global_block() nccl_id_var = block.create_var( name=unique_name.generate('nccl_id'), persistable=True, type=core.VarDesc.VarType.RAW) block.append_op( type='c_gen_nccl_id', inputs={}, outputs={'Out': nccl_id_var}, attrs={ 'rank': group_rank, 'endpoint': current_endpoint, 'other_endpoints': other_endpoints, OP_ROLE_KEY: OpRole.Forward, }) block.append_op( type='c_comm_init', inputs={'X': nccl_id_var}, outputs={}, attrs={ 'nranks': nranks, 'rank': group_rank, 'ring_id': ring_id, OP_ROLE_KEY: OpRole.Forward, }) with fluid.program_guard(main_program): op_type = "c_allreduce_sum" data = fluid.layers.fill_constant(shape=[1], dtype='float32', value=2.5) helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [data]}, outputs={'Out': [data]}, attrs={'ring_id': ring_id, 'use_calc_stream': True}) print("startup program:", startup_program) print("main program:", main_program) def train(world_endpoints, world_device_ids, local_device_ids, local_rank): startup_programs = [] main_programs = [] #trainer_endpoints=["127.0.0.1:6071","127.0.0.1:6072","127.0.0.1:6073","127.0.0.1:6074"] trainer_endpoints = world_endpoints groups = [[], [], []] groups[0] = [trainer_endpoints[0], trainer_endpoints[1]] groups[1] = [trainer_endpoints[2], trainer_endpoints[3]] groups[2] = [trainer_endpoints[0], trainer_endpoints[2]] print("groups:", groups) for i in range(len(trainer_endpoints)): startup_programs.append(fluid.Program()) main_programs.append(fluid.Program()) for idx, group in enumerate(groups): for te in group: te_idx = trainer_endpoints.index(te) startup_program = startup_programs[te_idx] main_program = main_programs[te_idx] init_communicator(startup_program, main_program, te, group, idx) print(len(startup_programs)) print(startup_programs[local_rank]) print(main_programs[local_rank]) print("local rank: ", local_rank) print("local startup program: ", startup_programs[local_rank]) startup_program = startup_programs[local_rank] main_program = main_programs[local_rank] loss = Loss(Block(main_program)) optimizer = ascend_optimizer.AscendOptimizer(None, fetch_list=[]) optimizer.minimize(loss, startup_program, auto_dp=True) exe = paddle.static.Executor(paddle.CPUPlace()) #exe.run(startup_program) exe.run(main_program) worker_endpoints = fleet.worker_endpoints() world_device_ids = fleet.world_device_ids() local_device_ids = fleet.local_device_ids() local_rank = int(fleet.local_rank()) print("worker_endpoints:", worker_endpoints) print("world_device_ids:", world_device_ids) print("local_device_ids:", local_device_ids) print("local_rank:", local_rank) train(worker_endpoints, world_device_ids, local_device_ids, local_rank)