# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .optimizer import Optimizer from ..fluid import core from ..fluid import framework from ..fluid.framework import Variable, name_scope from ..fluid.layer_helper import LayerHelper from ..fluid import unique_name from ..fluid import layers import paddle.fluid as fluid from paddle.fluid.regularizer import L2DecayRegularizer __all__ = ["Momentum"] class Momentum(Optimizer): r""" Simple Momentum optimizer with velocity state This optimizer has a flag for Nestrov Momentum. The update equations are as follows: .. math:: & velocity = mu * velocity + gradient & if (use\_nesterov): &\quad param = param - (gradient + mu * velocity) * learning\_rate & else: &\quad param = param - learning\_rate * velocity Parameters: learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``. It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001. momentum (float): Momentum factor. The default value is 0.9. parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \ It canbe a float value as coeff of L2 regularization or \ :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`. If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \ the regularization setting here in optimizer will be ignored for this parameter. \ Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false. rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \ Often choose to be ``1.0/batch_size``. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle import numpy as np inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = paddle.nn.Linear(10, 10) inp = paddle.to_tensor(inp) out = linear(inp) loss = paddle.mean(out) beta1 = paddle.to_tensor([0.9], dtype="float32") beta2 = paddle.to_tensor([0.99], dtype="float32") momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01) back = out.backward() momentum.step() momentum.clear_grad() """ _velocity_acc_str = "velocity" def __init__(self, learning_rate=0.001, momentum=0.9, parameters=None, use_nesterov=False, weight_decay=None, grad_clip=None, multi_precision=False, rescale_grad=1.0, name=None): if learning_rate is None: raise ValueError("learning_rate is not set") if momentum is None: raise ValueError("momentum is not set") predicate = lambda regular: isinstance(regular, L2DecayRegularizer) py_regular = None if predicate(weight_decay) else weight_decay super(Momentum, self).__init__( learning_rate=learning_rate, parameters=parameters, weight_decay=py_regular, grad_clip=grad_clip, name=name) self.type = "momentum" self._momentum = momentum self._use_nesterov = bool(use_nesterov) self._regularization_method = "" self._regularization_coeff = 0 if (isinstance(weight_decay, L2DecayRegularizer)): self._regularization_method = "l2_decay" self._regularization_coeff = weight_decay._regularization_coeff self._multi_precision = multi_precision self._rescale_grad = rescale_grad self._master_weights = {} if framework.in_dygraph_mode(): self.helper = LayerHelper(self.__class__.__name__) for p in parameters: self._add_accumulator(self._velocity_acc_str, p) else: all_parameters = fluid.default_main_program().global_block( ).all_parameters() self.helper = LayerHelper(self.__class__.__name__) for p in all_parameters: if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16: master_p = self._create_master_weight(p) self._add_accumulator(self._velocity_acc_str, master_p) continue if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision: warnings.warn( "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence." "Consider using multi_precision=True option of the Momentum optimizer." ) self._add_accumulator(self._velocity_acc_str, p) def _create_master_weight(self, param): assert isinstance(self.helper, LayerHelper) var_name = param.name + "_fp32_master" var_name = unique_name.generate(var_name) var = layers.create_global_var( name=var_name, shape=param.shape, value=0, dtype='float32', persistable=True) block = self.helper.startup_program.global_block() block.append_op( type="cast", inputs={"X": [param]}, outputs={"Out": [var]}, attrs={ "in_dtype": param.dtype, "out_dtype": core.VarDesc.VarType.FP32 }) self._master_weights[param.name] = var return var def _get_accumulator(self, name, param): """Utility function to fetch an accumulator for a parameter Args: name: name of the accumulator param: parameter variable for which accumulator is to be fetched Returns: accumulator variable for the parameter """ if self._name is not None: name = self._name + "_" + name find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16 target_param = self._master_weights[ param.name] if find_master else param target_name = target_param.name if (name not in self._accumulators or target_name not in self._accumulators[name]): raise Exception("Accumulator {} does not exist for parameter {}". format(name, target_name)) return self._accumulators[name][target_name] def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) # create accumulator in init func, so no implementation here def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) velocity_acc = self._get_accumulator(self._velocity_acc_str, param_and_grad[0]) lr = self._create_param_lr(param_and_grad) if framework.in_dygraph_mode(): _, _ = core.ops.momentum( param_and_grad[0], param_and_grad[1], velocity_acc, lr, param_and_grad[0], velocity_acc, 'mu', self._momentum, 'use_nesterov', self._use_nesterov, 'regularization_method', self._regularization_method, 'regularization_coeff', self._regularization_coeff) return None find_master = self._multi_precision and param_and_grad[ 0].dtype == core.VarDesc.VarType.FP16 master_weight = (self._master_weights[param_and_grad[0].name] if find_master else None) attrs = { "mu": self._momentum, "use_nesterov": self._use_nesterov, "regularization_method": self._regularization_method, "regularization_coeff": self._regularization_coeff, "multi_precision": find_master, "rescale_grad": self._rescale_grad } inputs = { "Param": [param_and_grad[0]], "Grad": [param_and_grad[1]], "Velocity": [velocity_acc], "LearningRate": [lr] } outputs = { "ParamOut": [param_and_grad[0]], "VelocityOut": [velocity_acc] } if find_master: inputs["MasterParam"] = master_weight outputs["MasterParamOut"] = master_weight # create the momentum optimize op momentum_op = block.append_op( type=self.type, inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=True) return momentum_op