// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/affine_channel.h" #include #include #include using anakin::graph::GraphGlobalMem; using anakin::AK_FLOAT; using anakin::Precision; using anakin::saber::NV; using anakin::saber::X86; using anakin::saber::Shape; using anakin::PBlock; using anakin::PTuple; namespace paddle { namespace inference { namespace anakin { void AffineChannelOpConverter::operator()( const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1); PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1); auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front(); auto input_name = op_desc.Input("X").front(); auto output_name = op_desc.Output("Out").front(); // Copy the Scale to CPUPlace and get the pointer. auto *scale_v = scope.FindVar(op_desc.Input("Scale").front()); PADDLE_ENFORCE_NOT_NULL(scale_v); auto *scale_t = scale_v->GetMutable(); std::unique_ptr scale_tensor( new framework::LoDTensor()); scale_tensor->Resize(scale_t->dims()); TensorCopySync((*scale_t), platform::CPUPlace(), scale_tensor.get()); // Copy the Bias to CPUPlace and get the pointer. auto *bias_v = scope.FindVar(op_desc.Input("Bias").front()); PADDLE_ENFORCE_NOT_NULL(bias_v); auto *bias_t = bias_v->GetMutable(); std::unique_ptr bias_tensor(new framework::LoDTensor()); bias_tensor->Resize(bias_t->dims()); TensorCopySync((*bias_t), platform::CPUPlace(), bias_tensor.get()); engine_->AddOp(op_name, "AffineChannel", {input_name}, {output_name}); // Generate the Scale parameter of Anakin. auto scale_shape = framework::vectorize2int(scale_t->dims()); while (scale_shape.size() < 4) { scale_shape.insert(scale_shape.begin(), 1); } Shape anakin_scale_shape(scale_shape); auto *weight1 = GraphGlobalMem::Global().template new_block( anakin_scale_shape); float *scale_cpu_data = static_cast(weight1->h_tensor().mutable_data()); std::copy_n(scale_tensor->data(), scale_tensor->numel(), scale_cpu_data); weight1->d_tensor().set_shape(anakin_scale_shape); weight1->d_tensor().copy_from(weight1->h_tensor()); engine_->AddOpAttr(op_name, "weight_1", *weight1); // Generate the Bias parameter of Anakin. auto bias_shape = framework::vectorize2int(bias_t->dims()); while (bias_shape.size() < 4) { bias_shape.insert(bias_shape.begin(), 1); } Shape anakin_bias_shape(bias_shape); auto *weight2 = GraphGlobalMem::Global().template new_block( anakin_bias_shape); float *bias_cpu_data = static_cast(weight2->h_tensor().mutable_data()); std::copy_n(bias_tensor->data(), bias_tensor->numel(), bias_cpu_data); weight2->d_tensor().set_shape(anakin_bias_shape); weight2->d_tensor().copy_from(weight2->h_tensor()); engine_->AddOpAttr(op_name, "weight_2", *weight2); } } // namespace anakin } // namespace inference } // namespace paddle REGISTER_ANAKIN_OP_CONVERTER(affine_channel, AffineChannelOpConverter);