/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" using namespace paddle; // NOLINT using namespace std; // NOLINT DECLARE_bool(use_gpu); DECLARE_int32(gpu_id); DECLARE_bool(thread_local_rand_use_global_seed); vector randSampling(int range, int n) { srand(1); CHECK_GE(range, n); vector num(range); iota(begin(num), end(num), 0); if (range == n) return num; random_shuffle(begin(num), end(num)); num.resize(n); return num; } void genRandomSeqInfo(vector& seqStartPosition, vector& subSeqStartPosition) { const int maxSeqNum = 5; // generate random start position information int seqNum = 1 + (rand() % maxSeqNum); seqStartPosition.resize(seqNum + 1, 0); subSeqStartPosition.resize(1, 0); for (int i = 0; i < seqNum; ++i) { int subSeqLen = 1 + (rand() % maxSeqNum); for (int j = 0; j < subSeqLen; ++j) subSeqStartPosition.push_back(subSeqStartPosition.back() + subSeqLen); seqStartPosition[i + 1] = subSeqStartPosition.back(); } } void genRandomGroundTruth(real* values, vector>& groundTruth, vector& seqStartPosition, vector& subSeqStartPosition, bool useSubseqInfo, size_t beamSize) { auto genData = [&](real* values, vector& startPos, size_t beamSize) { groundTruth.resize(startPos.size() - 1, vector(beamSize, -1)); for (size_t i = 0; i < startPos.size() - 1; ++i) { int seqLen = startPos[i + 1] - startPos[i]; vector pos = randSampling(seqLen, min(static_cast(beamSize), seqLen)); for (size_t j = 0; j < pos.size(); ++j) { groundTruth[i][j] = pos[j]; values[subSeqStartPosition[i] + pos[j]] = 1.; } } }; if (useSubseqInfo) genData(values, subSeqStartPosition, beamSize); else genData(values, seqStartPosition, beamSize); } // Test that the batchNormLayer can be followed by a ConvLayer TEST(Layer, kmaxSeqScoreLayer) { const size_t beamSize = 5; vector seqStartPosition; vector subSeqStartPosition; genRandomSeqInfo(seqStartPosition, subSeqStartPosition); MatrixPtr inValue = Matrix::create(subSeqStartPosition.back(), 1, false, false); inValue->randomizeUniform(); for (auto hasSubseq : {false, true}) { vector> groundTruth; genRandomGroundTruth(inValue->getData(), groundTruth, seqStartPosition, subSeqStartPosition, hasSubseq, beamSize); for (auto useGpu : {false, true}) { TestConfig config; config.layerConfig.set_type("kmax_seq_score"); config.layerConfig.set_beam_size(beamSize); config.inputDefs.push_back( {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA, "layer_0", 1, 0}); config.layerConfig.add_inputs(); // data layer initialize std::vector dataLayers; LayerMap layerMap; vector datas; initDataLayer(config, &dataLayers, &datas, &layerMap, "kmax_seq_score", 100, false, useGpu); // test layer initialize std::vector parameters; LayerPtr kmaxSeqScoreLayer; initTestLayer(config, &layerMap, ¶meters, &kmaxSeqScoreLayer); kmaxSeqScoreLayer->forward(PASS_TRAIN); } } } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); }