# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except jin compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ..layers import collective from ..framework import Parameter __parallel_ctx__clz__ = None def _is_data_parallel_mode(): global __parallel_ctx__clz__ return __parallel_ctx__clz__ is not None and int( os.getenv("PADDLE_TRAINERS_NUM", "1")) > 1 def _is_parallel_ctx_initialized(): global __parallel_ctx__clz__ return __parallel_ctx__clz__ is not None def _set_parallel_ctx(nccl_parallel_context): global __parallel_ctx__clz__ assert __parallel_ctx__clz__ is None, \ "ParallelContext can only be initialized once." __parallel_ctx__clz__ = nccl_parallel_context def _init_parallel_ctx(): global __parallel_ctx__clz__ assert __parallel_ctx__clz__ is not None, \ "ParallelContext should be initialized." __parallel_ctx__clz__.init() def _broadcast_parameters(parameters): for param in parameters: # In model parallel, some parameters are split into multiple devices, # so we could not broadcast these parameters. if param.is_distributed: continue if isinstance(param, Parameter) and param.trainable: collective._broadcast(param, 0, sync_mode=True)