// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/eager/backward.h" #include "paddle/fluid/eager/general_grad.h" #include "paddle/phi/kernels/autotune/switch_autotune.h" namespace egr { std::unordered_map getInDegreeMap( const std::deque& init_queue) { // Calculate in_degree for each node // We can completely remove this pass, if in_degree were set during forward // pass std::unordered_map node_in_degree_map; // Copy nodes std::deque queue = init_queue; std::unordered_set visited; // Visit each node exactly once in any order while (!queue.empty()) { GradNodeBase* node = queue.front(); queue.pop_front(); if (visited.count(node)) { continue; } visited.insert(node); PADDLE_ENFORCE_NOT_NULL( node, paddle::platform::errors::Fatal( "We got null node when we traverse the backward graph, and this " "should not happened please check your code and contact us.")); // Find and append next nodes const paddle::small_vector, kSlotSmallVectorSize>& metas = node->OutputMeta(); for (const auto& meta_list : metas) { for (const GradSlotMeta& meta : meta_list) { const auto& edge = meta.GetEdge(); GradNodeBase* next_node = edge.GetMutableGradNode().get(); // Next node could be nullptr if it is leaf tensor with no // AccumulationNode attached // Or it could also originated from dispensable inputs if (!next_node) continue; // Update in_degree if (!node_in_degree_map.count(next_node)) node_in_degree_map[next_node] = 0; node_in_degree_map[next_node]++; queue.push_back(next_node); } } } return node_in_degree_map; } // Enforce GradNode has TensorWrappers as Input void EnforceGradNodeHasInput(GradNodeBase* node) { VLOG(6) << "Running in EnforceGradNodeHasInput"; PADDLE_ENFORCE_NE( node->IsTensorWrappersCleared(), true, paddle::platform::errors::Fatal( "The TensorWrappers of %s do not exist. This may be because:\n" "You calculate backward twice for the same subgraph without " "setting retain_graph=True. Please set retain_graph=True in the " "first backward/grad call.\n", node->name())); } void DuplicateCheck(const std::vector& inputs, bool is_input) { std::unordered_set visisted_ins; std::string msg = is_input ? "inputs" : "outputs"; for (auto in : inputs) { AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(in); PADDLE_ENFORCE_EQ( visisted_ins.count(auto_grad_meta), 0, paddle::platform::errors::AlreadyExists( "%s contain duplicate tensor %s, please check %s carefully.", msg, in.name(), msg)); visisted_ins.insert(auto_grad_meta); } } GeneralGrad* GeneralGrad::general_grad_ = new GeneralGrad(); std::vector RunBackward( const std::vector& tensors, // output const std::vector& grad_tensors, bool retain_graph, bool create_graph = false, const std::vector& inputs = {}, bool allow_unused = false, const std::vector& no_grad_vars = {}) { VLOG(3) << "Start Backward"; // *Gradient Hook should happen at node-level // *Inplace version check should perform at node-level // *Cross-batch accumulation happens at forward pass // GeneralGrad bool is_general_grad = !inputs.empty(); if (is_general_grad) GeneralGrad::Instance().Clear(); /* --- Initialization --- */ // 1. Init queue with starting nodes // 2. Prepare initial input buffers std::deque queue; std::deque orig_queue; std::unordered_map> node_input_buffers_dict; for (size_t i = 0; i < tensors.size(); i++) { const paddle::experimental::Tensor& tensor = tensors[i]; AutogradMeta* auto_grad_meta = EagerUtils::nullable_autograd_meta(tensor); if (auto_grad_meta == nullptr) { VLOG(3) << "Skip auto grad since there is no grad op for var or loss is " "stop_gradient=True: " << tensor.name(); continue; } // Get grad input info from target tensors auto input_info = auto_grad_meta->OutRankInfo(); VLOG(2) << "Out Rank of Tensor is slot: " << input_info.first << ", rank: " << input_info.second; // Get target GradNodeBase from target tensors auto shared_grad_node = auto_grad_meta->GetMutableGradNode(); if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr || auto_grad_meta->StopGradient()) { VLOG(3) << "Skip auto grad since there is no grad op for var or loss is " "stop_gradient=True: " << tensor.name(); continue; } // TODO(zhanlve): Copy and Modify GradNode if is_general_grad GradNodeBase* grad_node = shared_grad_node.get(); if (is_general_grad) { // Save orig grad node orig_queue.push_back(grad_node); // Replace grad_node with copied grad_node grad_node = GeneralGrad::Instance().CopyGradNode(shared_grad_node); // Record potential startup grad node GeneralGrad::Instance().GetPotentialStartupNodes()->insert(grad_node); } // Prepare GradTensorHolder if (!node_input_buffers_dict.count(grad_node)) { VLOG(6) << "Create Value for grad input tensor " << i << " of grad node: " << grad_node->name(); node_input_buffers_dict[grad_node] = std::make_unique(grad_node->InputMeta()); } bool copy_from_grad_t = grad_tensors.size() > 0 && grad_tensors[i].initialized(); if (copy_from_grad_t) { PADDLE_ENFORCE( grad_tensors.size() == tensors.size(), paddle::platform::errors::Fatal( "Detected size mismatch between tensors and grad_tensors" "grad_tensors should either have " "size = 0 or same size as tensors.")); // Feed given tensor if it's provided VLOG(6) << "Fill grad input tensor " << i << "with give grad tensor"; // Deep copy node_input_buffers_dict[grad_node]->CopyValueFromTensor( input_info.first, input_info.second, grad_tensors[i]); } else { VLOG(6) << "Fill grad input tensor " << i << " with 1.0"; // Initialize tensor with 1.0 // Forward Tensor "tensor" is passed to indicate tensortype, datatype and // dims // GradTensorHolder will initialize another tensor with same tensortype, // datatype and dims but filled with 1.0 node_input_buffers_dict[grad_node]->CopyValueFromTensor( input_info.first, input_info.second, tensor, /*fill_one=*/true); } // Prepare queue, potential startup_nodes queue.push_back(grad_node); } if (is_general_grad) { // Prepare several vital preprocess for GeneralGrad GeneralGrad::Instance().PreparedForGeneralGrad( inputs, no_grad_vars, orig_queue, &queue, node_input_buffers_dict); } VLOG(6) << "Update In degree Map for backward"; // 3. Compute in_degree for each node std::unordered_map node_in_degree_map = getInDegreeMap(queue); VLOG(3) << "Startup_ops's size is " << queue.size(); /* --- Topological Visit --- */ // 1. Pop queue // 2. Run node // |- Check and capture target result // |- node(grads) // |- Prepare for next node // 3. Update queue VLOG(3) << "Run Backward"; while (!queue.empty()) { GradNodeBase* node = queue.front(); VLOG(3) << "Running GradNode:" << node->name() << " addr:" << node; paddle::platform::RecordEvent node_record_event( std::string((*node).name()), paddle::platform::TracerEventType::Operator, 1); if (queue.size() > 1 && node_in_degree_map[node] != 0) { queue.pop_front(); continue; } queue.pop_front(); // Run node: This is where Hook happens auto node_input_buffer_iter = node_input_buffers_dict.find(node); PADDLE_ENFORCE_NE( node_input_buffer_iter, node_input_buffers_dict.end(), paddle::platform::errors::Fatal( "Unable to find next node in the GradTensorHolder \n" "Trying to run Node without configuring its GradTensorHolder.")); std::unique_ptr node_input_buffer = std::move(node_input_buffer_iter->second); // Check input EnforceGradNodeHasInput(node); VLOG(6) << "Run Backward Kernel with GradTensorHolder."; // Run Pre Backward Node and get outputs paddle::small_vector, kSlotSmallVectorSize> grad_output_tensors = (*node)( node_input_buffer->Buffers(), create_graph, is_general_grad); if (!inputs.empty() && is_general_grad) { GeneralGrad::Instance().SetResultForEnddingNodes(grad_output_tensors, node); } // retain_grad or not if (!retain_graph) { VLOG(6) << "retain_graph is false, need to clear the TensorWrapper of nodes."; node->ClearTensorWrappers(); } // TODO(jiabin): Should we erase it or find a more efficient way. node_input_buffers_dict.erase(node_input_buffer_iter); // Prepare GradTensorHolder for next node const paddle::small_vector, kSlotSmallVectorSize>& metas = node->OutputMeta(); PADDLE_ENFORCE(metas.size() == grad_output_tensors.size() || metas.empty(), paddle::platform::errors::Fatal( "Number of edges should be either empty ( for leaf node " ") or the same as number of output grad tensors, but we " "got edges size is: %d, grad_output size is: %d", metas.size(), grad_output_tensors.size())); for (size_t i = 0; i < metas.size(); i++) { for (size_t j = 0; j < metas[i].size(); j++) { const Edge& edge = metas[i][j].GetEdge(); if (!edge.IsInitialized()) { continue; } auto edge_rank = edge.GetEdgeRankInfo(); // Since we make edge has as same rank as bwd outputs, we indexing them // with the same rank(i, j) auto next_node_shared = edge.GetMutableGradNode(); VLOG(3) << "Node: " << node->name() << " addr:" << node << ", Found pending node: " << next_node_shared->name() << " addr: " << next_node_shared.get(); // Next node could be nullptr if it is leaf tensor with no // AccumulationNode attached // Or it could also originated from dispensable inputs if (!next_node_shared || !next_node_shared.get() || grad_output_tensors[i].empty()) { continue; } PADDLE_ENFORCE_LT( j, grad_output_tensors[i].size(), paddle::platform::errors::Fatal( "Rank of grad_output_tensors should be less than " "grad_output_tensors[i].size(), which is: %d. This error may " "indicate autoprune or autograd api error. ", grad_output_tensors.size())); paddle::experimental::Tensor& grad_output_tensor = grad_output_tensors[i][j]; if ((!grad_output_tensor.defined() || !grad_output_tensor.initialized())) { VLOG(6) << "We get grad_output_tensor with slot: " << i << ", rank: " << j << " as uninitialized or undefined tensor"; } VLOG(6) << "Get Edge and grad_output_tensor with slot: " << i << ", rank: " << j << " 's name is: " << grad_output_tensor.name(); auto* next_node = next_node_shared.get(); if (!node_input_buffers_dict.count(next_node)) { const auto& input_meta = next_node->InputMeta(); auto grad_tensor_holder = std::make_unique(input_meta); VLOG(6) << "Construct GradTensorHolder for grad node: " << next_node->name(); node_input_buffers_dict[next_node] = std::move(grad_tensor_holder); } VLOG(6) << "Sum grad inputs for edge slot: " << edge_rank.first << ", rank: " << edge_rank.second; node_input_buffers_dict[next_node]->add(edge_rank.first, edge_rank.second, grad_output_tensor, create_graph); // Update queue node_in_degree_map[next_node]--; VLOG(6) << next_node->name() << " ref_cnt is: " << node_in_degree_map[next_node]; PADDLE_ENFORCE( node_in_degree_map[next_node] >= 0, paddle::platform::errors::Fatal( "Detected in-degree value smaller than zero. For Node: %s" "Node's in-degree cannot be negative.", next_node->name())); if (is_general_grad) { if (node_in_degree_map[next_node] == 0 && GeneralGrad::Instance().IsNeededNodes(next_node)) { if (dynamic_cast(next_node)) { queue.push_front(std::move(next_node)); } else { queue.push_back(std::move(next_node)); } } } else { if (node_in_degree_map[next_node] == 0) { if (dynamic_cast(next_node)) { queue.push_front(std::move(next_node)); } else { queue.push_back(std::move(next_node)); } } } } } } VLOG(6) << "Run Backward Final hook size: " << egr::Controller::Instance().FinalBackwardHooks().size(); for (auto& hook : egr::Controller::Instance().FinalBackwardHooks()) { (*hook)(); } egr::Controller::Instance().ClearFinalBackwardHooks(); if (!is_general_grad) return {}; return GeneralGrad::Instance().GetResults(inputs, allow_unused, create_graph); } void Backward( const std::vector& tensors, // outputs const std::vector& grad_tensors, bool retain_graph) { VLOG(3) << "Run in Backward"; paddle::platform::RecordEvent backward_record_event( "backward", paddle::platform::TracerEventType::UserDefined, 1); RunBackward(tensors, grad_tensors, retain_graph); phi::autotune::AutoTuneStatus::Instance().Update(); } std::vector Grad( const std::vector& tensors, // outputs const std::vector& inputs, const std::vector& grad_tensors, bool retain_graph, bool create_graph, bool only_inputs, bool allow_unused, const std::vector& no_grad_vars) { VLOG(3) << "Run in Grad"; DuplicateCheck(inputs, true /* is_input */); DuplicateCheck(tensors, false /* is_input */); return RunBackward(tensors, grad_tensors, retain_graph, create_graph, inputs, allow_unused, no_grad_vars); } } // namespace egr