// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/affine_grid_kernel.h" #include "paddle/fluid/platform/device/gpu/gpu_device_function.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/affine_grid_utils.h" namespace phi { template __global__ void LinspaceKernel(T start, T step, int64_t size, T* out) { CUDA_KERNEL_LOOP(index, size) { out[index] = start + step * index; } } template struct Linspace { void operator()(T start, T end, int count, bool align_corners, DenseTensor* numbers, const phi::GPUContext& dev_ctx) { numbers->Resize(phi::make_ddim({count})); T* number_data = dev_ctx.template Alloc(numbers); T slice = (end - start) / (T)(count - 1); if (!align_corners) { slice = (end - start) / (T)count; start *= (T)(count - 1) / (T)count; } auto stream = dev_ctx.stream(); int block = 512; int grid = (count + block - 1) / block; LinspaceKernel <<>>(start, slice, count, number_data); } }; template __global__ void affine_grid_kernel(const int count, int n, int out_h, int out_w, T h_start, T w_start, T h_step, T w_step, const T* theta, // N, 2, 3 T* output) { CUDA_KERNEL_LOOP(index, count) { int w = index % out_w; int h = (index / out_w) % out_h; int n = index / (out_w * out_h); T h_coor = h_step * static_cast(h) + static_cast(h_start); T w_coor = w_step * static_cast(w) + static_cast(w_start); int theta_offset = n * 6; // 2 * 3; // affine from (h_coor, w_coor) to (x, y) output[index * 2] = theta[theta_offset] * w_coor + theta[theta_offset + 1] * h_coor + theta[theta_offset + 2]; output[index * 2 + 1] = theta[theta_offset + 3] * w_coor + theta[theta_offset + 4] * h_coor + theta[theta_offset + 5]; } } template void AffineGridCUDAKernel(const Context& dev_ctx, const DenseTensor& input, const IntArray& outputShape, bool align_corners, DenseTensor* output) { auto* theta = &input; int n = theta->dims()[0]; auto& size_attr = outputShape.GetData(); int h = 0; int w = 0; h = size_attr[2]; w = size_attr[3]; output->Resize(phi::make_ddim({n, h, w, 2})); T* out_data = dev_ctx.template Alloc(output); T h_step; T w_step; T h_start = -1; T w_start = -1; if (align_corners) { h_step = static_cast(2) / static_cast(h - 1); w_step = static_cast(2) / static_cast(w - 1); } else { h_step = static_cast(2) / static_cast(h); w_step = static_cast(2) / static_cast(w); h_start *= static_cast(h - 1) / static_cast(h); w_start *= static_cast(w - 1) / static_cast(w); } const int count = n * h * w; int block = 512; int grid = (count + block - 1) / block; auto cu_stream = dev_ctx.stream(); affine_grid_kernel<<>>( count, n, h, w, h_start, w_start, h_step, w_step, theta->data(), // N, 2, 3 out_data); } } // namespace phi PD_REGISTER_KERNEL( affine_grid, GPU, ALL_LAYOUT, phi::AffineGridCUDAKernel, float, double){};