# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import tempfile import shutil import numpy as np import paddle from paddle.static import InputSpec import paddle.vision.models as models # test the predicted resutls of static graph and dynamic graph are equal # when used pretrained model class TestPretrainedModel(unittest.TestCase): def infer(self, arch): path = tempfile.mkdtemp() x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32) res = {} for dygraph in [True, False]: if not dygraph: paddle.enable_static() net = models.__dict__[arch](pretrained=True) inputs = [InputSpec([None, 3, 224, 224], 'float32', 'image')] model = paddle.Model(network=net, inputs=inputs) model.prepare() if dygraph: model.save(path) res['dygraph'] = model.predict_batch(x) else: model.load(path) res['static'] = model.predict_batch(x) if not dygraph: paddle.disable_static() shutil.rmtree(path) np.testing.assert_allclose(res['dygraph'], res['static']) def test_models(self): arches = [ 'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet', 'resnext50_32x4d', 'inception_v3', 'densenet121', 'squeezenet1_0', 'squeezenet1_1', 'googlenet', 'shufflenet_v2_x0_25', 'shufflenet_v2_swish', 'wide_resnet50_2', 'wide_resnet101_2' ] for arch in arches: self.infer(arch) if __name__ == '__main__': unittest.main()