// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/operators/controlflow/while_op_helper.h" #include "paddle/fluid/operators/detail/safe_ref.h" namespace paddle { namespace operators { using StepScopeVar = std::vector; using LoDTensor = framework::LoDTensor; namespace { // NOLINT static std::string GetSkipEagerDeletionVarsDebugString( const std::vector &vars) { std::string str = "Skip " + std::to_string(vars.size()) + " var(s) in eager deletion mode: "; for (auto &var : vars) { str.append(var); str.push_back(' '); } return str; } } // NOLINT class WhileOp : public framework::OperatorBase { public: WhileOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} private: void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition))); auto &cond = scope.FindVar(Input(kCondition))->Get(); PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1})); framework::Executor executor(dev_place); auto *block = Attr(kStepBlock); auto *program = block->Program(); auto step_scopes = scope.FindVar(Output(kStepScopes))->GetMutable(); if (step_scopes->size() > 0) { platform::DeviceContextPool::Instance().Get(dev_place)->Wait(); for (auto &s : *step_scopes) { if (scope.HasKid(s)) { scope.DeleteScope(s); } } step_scopes->clear(); } PADDLE_ENFORCE_EQ(step_scopes->size(), 0, "The StepScope should be empty."); PADDLE_ENFORCE(platform::is_cpu_place(cond.place()), "Condition of while op must in CPU memory."); bool is_test = Attr("is_test"); auto &skip_vars = Attr>(kSkipEagerDeletionVars); VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars); auto ctx = executor.Prepare(*program, block->ID(), skip_vars); if (!is_test) { while (cond.data()[0]) { auto ¤t_scope = scope.NewScope(); step_scopes->push_back(¤t_scope); executor.RunPreparedContext(ctx.get(), ¤t_scope, false, true, true); } } else { auto ¤t_scope = scope.NewScope(); executor.CreateVariables(*program, ¤t_scope, block->ID()); while (cond.data()[0]) { for (auto &name : current_scope.LocalVarNames()) { auto *var = current_scope.Var(name); if (var->IsType()) { // Clear all lod information for all lod_tensors. auto *t = var->GetMutable(); framework::LoD empty_lod; t->set_lod(empty_lod); } else if (var->IsType()) { // Clear elements of all tensor arrays. auto *t = var->GetMutable(); t->clear(); } } executor.RunPreparedContext(ctx.get(), ¤t_scope, false, false, false); } scope.DeleteScope(¤t_scope); } } }; class WhileOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput(kX, "A set of variables, which are required by operators inside the " "block of While Op.") .AsDuplicable(); AddInput( kCondition, "(Bool) An scalar. When it's False, the While Op will be terminated.") .AsDuplicable(); AddOutput(kOutputs, "A set of variables, which will be assigned with values " "generated by the operators inside the block of While Op.") .AsDuplicable(); AddOutput(kStepScopes, "(StepScopeVar) A vector of local scope, which size equals the " "step number of While Op. The i'th scope storages temporary " "variables generated in the i'th step."); AddAttr(kStepBlock, "The step block inside WhileOp"); AddAttr("is_test", "(bool, default false) Set to true for inference only, false " "for training. Some layers may run faster when this is true.") .SetDefault(false); AddAttr>(kSkipEagerDeletionVars, "Vars that would skip eager deletion." "Users should not set this manually.") .SetDefault(std::vector()); AddComment(R"DOC( )DOC"); } }; class WhileGradOp : public framework::OperatorBase { public: WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} private: void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { PADDLE_ENFORCE(!Attr("is_test"), "GradOp is only callable when is_test is false"); // get device context from pool platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &dev_ctx = *pool.Get(dev_place); framework::Executor executor(dev_place); auto *block = Attr(kStepBlock); auto *program = block->Program(); auto &skip_vars = Attr>(kSkipEagerDeletionVars); VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars); auto ctx = executor.Prepare(*program, block->ID(), skip_vars); auto *step_scopes = scope.FindVar(Input(kStepScopes))->GetMutable(); auto outside_og_names = Inputs(framework::GradVarName(kOutputs)); auto inside_og_names = Attr>("original_output_grad"); PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size()); for (auto cur_scope_iter = step_scopes->rbegin(); cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) { VLOG(3) << "Start backward at time_step " << cur_scope_iter - step_scopes->rbegin(); framework::Scope &cur_scope = **cur_scope_iter; // Link OG from outside to inside for (size_t i = 0; i < outside_og_names.size(); ++i) { auto outside_og_name = outside_og_names[i]; auto inside_og_name = inside_og_names[i]; VLOG(8) << "Linking outside " << outside_og_name << " --> inside " << inside_og_name; if (scope.FindVar(outside_og_name) == nullptr) { continue; } auto &og_outside = detail::Ref(scope.FindVar(outside_og_name), "Cannot find Outside Gradient %s", outside_og_name); auto &og_inside = detail::Ref(cur_scope.Var(inside_og_name), "Cannot find inside gradient %s", inside_og_name); if (og_outside.IsType()) { auto &outside_tensor = og_outside.Get(); auto &inside_tensor = detail::Ref(og_inside.GetMutable()); inside_tensor.set_lod(outside_tensor.lod()); inside_tensor.ShareDataWith(outside_tensor); } else if (og_outside.IsType()) { auto outside_array = og_outside.GetMutable(); auto &inside_array = detail::Ref(og_inside.GetMutable()); inside_array.clear(); inside_array.resize(outside_array->size()); VLOG(8) << outside_og_name << " size = " << outside_array->size(); for (size_t j = 0; j < inside_array.size(); ++j) { if (!outside_array->at(j).IsInitialized()) { outside_array->at(j).Resize({0}); } VLOG(8) << j << " " << outside_array->at(j).numel(); if (outside_array->at(j).numel() != 0) { inside_array[j].set_lod(outside_array->at(j).lod()); inside_array[j].ShareDataWith(outside_array->at(j)); } else { PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0); } } } else { PADDLE_THROW("Currently only support LoDTensor and LoDTensorArray."); } } executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false, true, true); // The Outputs(kXGRAD) contains the names of the gradient of parameters // and inputs. auto &pg_ig_names = Outputs(kXGRAD); auto &p_names = Inputs(kX); PADDLE_ENFORCE_EQ(pg_ig_names.size(), p_names.size()); for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) { if (pg_ig_names[param_id] == framework::kEmptyVarName) { continue; // parameter doesn't have gradient } auto inside_grad_name = framework::GradVarName(p_names[param_id]); // for some grad_op, their input doesn't have gradient, // for example lookup_table_grad_op, the input(Idx) doesn't have // gradient. auto pg_ig_var = cur_scope.FindVar(inside_grad_name); PADDLE_ENFORCE(pg_ig_var != nullptr); if (pg_ig_var->IsType()) { auto pg_ig_lod_t_arr = pg_ig_var->GetMutable(); bool empty = true; for (auto &each : *pg_ig_lod_t_arr) { if (each.numel() != 0) { empty = false; break; } } if (empty) { LOG(WARNING) << pg_ig_names[param_id] << " is not found in cur_scope."; continue; } } // // TODO(tonyyang-svail): Not sure we need the following // // If does not compute gradient of that variable inside rnn, // just // // continue // if (local_var_names.find(inside_grad_name) == // local_var_names.end()) { // continue; // } // zero gradient variable in step 0 if (cur_scope_iter == step_scopes->rbegin()) { auto *var = (*cur_scope_iter)->FindVar(inside_grad_name); PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name); PADDLE_ENFORCE( var->IsType() || var->IsType(), "Currently the type of var only can be LoDTensorArray, " "or LoDTensor, but the received var[%s] is %s.", inside_grad_name, framework::ToTypeName(var->Type())); if (var->IsType()) { auto &inside_tensor = var->Get(); framework::AttributeMap attrs; attrs["dtype"] = inside_tensor.type(); attrs["shape"] = framework::vectorize(inside_tensor.dims()); attrs["value"] = 0.0f; auto var_name = pg_ig_names[param_id]; auto zero_op = framework::OpRegistry::CreateOp( "fill_constant", framework::VariableNameMap{}, {{"Out", {var_name}}}, attrs); zero_op->Run(scope, dev_place); scope.FindVar(var_name) ->GetMutable() ->set_lod(inside_tensor.lod()); } } auto new_inside_name = cur_scope.Rename(inside_grad_name); auto sum_op = framework::OpRegistry::CreateOp( "sum", {{"X", {pg_ig_names[param_id], new_inside_name}}}, {{"Out", {pg_ig_names[param_id]}}}, framework::AttributeMap{{"use_mkldnn", {false}}}); sum_op->Run(cur_scope, dev_place); cur_scope.Rename(new_inside_name, inside_grad_name); } dev_ctx.Wait(); const_cast(scope).DeleteScope(&cur_scope); } step_scopes->clear(); } }; class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { auto *while_grad = new framework::OpDesc(); while_grad->SetType("while_grad"); while_grad->SetInput(kX, Input(kX)); while_grad->SetInput(kOutputs, Output(kOutputs)); while_grad->SetInput(kStepScopes, Output(kStepScopes)); auto *grad_block = this->grad_block_[0]; auto *fwd_block = grad_block->ForwardBlock(); auto *parent_block = grad_block->ParentBlock(); // Not all of IGs will be generated by inner gradient operators of while op. // Ignore IGs that is not generated by the inside block. std::unordered_set inner_op_outputs; for (const auto *op : grad_block->AllOps()) { for (auto &oname : op->OutputArgumentNames()) { inner_op_outputs.insert(oname); } } auto igs = InputGrad(kX, /*do not drop empty gradient*/ false); for (auto &each_ig : igs) { if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) { VLOG(8) << "Ignore " << each_ig; each_ig = framework::kEmptyVarName; } } while_grad->SetOutput(framework::GradVarName(kX), igs); // OG should be re-calculated by step blocks, since many outputs of while op // do not need to calculate gradients. std::unordered_set block_ins; block_ins.reserve(Input(kX).size() + Output(kOutputs).size()); for (auto &p : Input(kX)) { block_ins.insert(p); } for (auto &o : Output(kOutputs)) { block_ins.insert(o); } std::unordered_set output_grads; for (const auto *op : grad_block->AllOps()) { for (auto &input_name : op->InputArgumentNames()) { // If the input of Op has been recorded or is generated by the forward // block, do not make it as input again. // The input is located in I/O or other op's outputs or the variable is // located in grad_block's parents if (block_ins.find(input_name) != block_ins.end() || (fwd_block->FindVarRecursive(input_name) != nullptr || parent_block->FindVarRecursive(input_name) != nullptr)) { continue; } output_grads.insert(input_name); } for (auto &output_name : op->OutputArgumentNames()) { block_ins.insert(output_name); } } std::vector output_grads_list; output_grads_list.resize(output_grads.size()); std::copy(output_grads.begin(), output_grads.end(), output_grads_list.begin()); while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list); while_grad->SetAttrMap(this->Attrs()); while_grad->SetBlockAttr(kStepBlock, grad_block); // record the original output gradient names, since the gradient name of // while operator could be renamed. while_grad->SetAttr("original_output_grad", output_grads_list); while_grad->SetAttr(kSkipEagerDeletionVars, std::vector()); return std::unique_ptr(while_grad); } }; class WhileGradOpVarTypeInference : public framework::VarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { auto p_names = ctx->Input(kX); auto pg_ig_names = ctx->Output(framework::GradVarName(kX)); for (size_t i = 0; i < p_names.size(); ++i) { if (ctx->HasVar(pg_ig_names[i])) { VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i] << " type: " << ctx->GetType(p_names[i]); ctx->SetType(pg_ig_names[i], ctx->GetType(p_names[i])); ctx->SetDataType(pg_ig_names[i], ctx->GetDataType(p_names[i])); } } } }; class WhileGradOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { ctx->HasInputs(kX); ctx->HasOutputs(framework::GradVarName(kX)); ctx->HasInputs(kOutputs); ctx->HasInputs(framework::GradVarName(kOutputs)); auto pg_ig_names = ctx->Outputs(kXGRAD); std::vector in_var_ptrs = ctx->GetInputVarPtrs(kX); std::vector out_var_ptrs = ctx->GetOutputVarPtrs(kXGRAD); PADDLE_ENFORCE(in_var_ptrs.size() == out_var_ptrs.size()); for (size_t i = 0; i < in_var_ptrs.size(); ++i) { if (pg_ig_names[i] == framework::kEmptyVarName) { continue; } if (ctx->IsRuntime()) { framework::Variable *in_var = boost::get(in_var_ptrs[i]); framework::Variable *out_var = boost::get(out_var_ptrs[i]); auto type = framework::ToVarType(in_var->Type()); if (type == framework::proto::VarType::LOD_TENSOR) { out_var->GetMutable()->Resize( in_var->Get().dims()); } else if (type == framework::proto::VarType::SELECTED_ROWS) { out_var->GetMutable()->set_height( in_var->Get().GetCompleteDims()[0]); } else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) { PADDLE_THROW("WhileGradOp doesn't support type %d", static_cast(type)); } } else { framework::VarDesc *in_var = boost::get(in_var_ptrs[i]); boost::get(out_var_ptrs[i]) ->SetShape(in_var->GetShape()); } } } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR(while, paddle::operators::WhileOp, paddle::operators::WhileOpMaker, paddle::operators::WhileGradOpDescMaker); REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp, paddle::operators::WhileGradOpShapeInference, paddle::operators::WhileGradOpVarTypeInference);