// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Created by Jiabin on 2019-08-16. // #include #include #include #include #include "gtest/gtest.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/imperative/basic_engine.h" #include "paddle/fluid/imperative/execution_context.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/device_context.h" namespace imperative = paddle::imperative; namespace platform = paddle::platform; namespace framework = paddle::framework; namespace paddle { namespace imperative { using vb_vector = std::vector>; using var_pair = std::pair; using ev_vector = std::vector>; using ev_pair = std::pair; TEST(test_tracer, test_trace_op) { // Doing an mul imperative::Tracer tracer; std::shared_ptr x_in( new imperative::VarBase(true, "x_in")); std::shared_ptr y_in( new imperative::VarBase(true, "y_in")); std::shared_ptr vout( new imperative::VarBase(true, "vout")); platform::CPUPlace place; std::vector src_data(10, 2.0); std::vector dims1 = {2, 5}; std::vector dims2 = {5, 2}; auto* x_in_tensor = x_in->MutableVar()->GetMutable(); auto* y_in_tensor = y_in->MutableVar()->GetMutable(); x_in_tensor->Resize(framework::make_ddim(dims1)); auto* mutable_x = x_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_x, place, src_data.data(), sizeof(float) * src_data.size()); y_in_tensor->Resize(framework::make_ddim(dims2)); auto* mutable_y = y_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_y, place, src_data.data(), sizeof(float) * src_data.size()); var_pair x_pair = var_pair("X", vb_vector(1, x_in)); var_pair y_pair = var_pair("Y", vb_vector(1, y_in)); var_pair out_pair = var_pair("Out", vb_vector(1, vout)); imperative::NameVarBaseMap ins = {x_pair, y_pair}; imperative::NameVarBaseMap outs = {out_pair}; framework::AttributeMap mul_attr_map; mul_attr_map["use_mkldnn"] = false; tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true); #ifndef PADDLE_WITH_XPU ASSERT_THROW(tracer.TraceOp("mul", ins, outs, mul_attr_map, platform::XPUPlace(0), true); , platform::EnforceNotMet); #endif const auto& out_tensor = vout->Var().Get(); for (int i = 0; i < vout->Var().Get().numel(); i++) { ASSERT_EQ(out_tensor.data()[i], 20.0); } } TEST(test_tracer, test_trace_op_with_backward) { // Doing an mul imperative::Tracer tracer; std::shared_ptr x_in( new imperative::VarBase(true, "x_in")); std::shared_ptr y_in( new imperative::VarBase(true, "y_in")); std::shared_ptr vout( new imperative::VarBase(true, "vout")); platform::CPUPlace place; std::vector src_data(10, 2.0); std::vector dims1 = {2, 5}; std::vector dims2 = {5, 2}; auto* x_in_tensor = x_in->MutableVar()->GetMutable(); auto* y_in_tensor = y_in->MutableVar()->GetMutable(); x_in_tensor->Resize(framework::make_ddim(dims1)); auto* mutable_x = x_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_x, place, src_data.data(), sizeof(float) * src_data.size()); y_in_tensor->Resize(framework::make_ddim(dims2)); auto* mutable_y = y_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_y, place, src_data.data(), sizeof(float) * src_data.size()); var_pair x_pair = var_pair("X", vb_vector(1, x_in)); var_pair y_pair = var_pair("Y", vb_vector(1, y_in)); var_pair out_pair = var_pair("Out", vb_vector(1, vout)); imperative::NameVarBaseMap ins = {x_pair, y_pair}; imperative::NameVarBaseMap outs = {out_pair}; framework::AttributeMap mul_attr_map; mul_attr_map["use_mkldnn"] = false; tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true); const auto& out_tensor = vout->Var().Get(); for (int i = 0; i < vout->Var().Get().numel(); i++) { ASSERT_EQ(out_tensor.data()[i], 20.0); } } TEST(test_tracer, test_track_backward_output) { // Doing an mul imperative::Tracer tracer; std::shared_ptr x_in( new imperative::VarBase(true, "x_in")); std::shared_ptr y_in( new imperative::VarBase(true, "y_in")); x_in->SetOverridedStopGradient(false); std::shared_ptr vout( new imperative::VarBase(true, "vout")); platform::CPUPlace place; std::vector src_data(10, 2.0); std::vector dims1 = {2, 5}; std::vector dims2 = {5, 2}; auto* x_in_tensor = x_in->MutableVar()->GetMutable(); auto* y_in_tensor = y_in->MutableVar()->GetMutable(); x_in_tensor->Resize(framework::make_ddim(dims1)); auto* mutable_x = x_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_x, place, src_data.data(), sizeof(float) * src_data.size()); y_in_tensor->Resize(framework::make_ddim(dims2)); auto* mutable_y = y_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_y, place, src_data.data(), sizeof(float) * src_data.size()); var_pair x_pair = var_pair("X", vb_vector(1, x_in)); var_pair y_pair = var_pair("Y", vb_vector(1, y_in)); var_pair out_pair = var_pair("Out", vb_vector(1, vout)); imperative::NameVarBaseMap ins = {x_pair, y_pair}; imperative::NameVarBaseMap outs = {out_pair}; framework::AttributeMap mul_attr_map; mul_attr_map["use_mkldnn"] = false; tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true); ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL); ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL); ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL); } TEST(test_tracer, test_track_backward_input) { // Doing an mul imperative::Tracer tracer; std::shared_ptr x_in( new imperative::VarBase(true, "x_in")); std::shared_ptr y_in( new imperative::VarBase(true, "y_in")); std::shared_ptr vout( new imperative::VarBase(true, "vout")); platform::CPUPlace place; x_in->SetOverridedStopGradient(false); std::vector src_data(10, 2.0); std::vector dims1 = {2, 5}; std::vector dims2 = {5, 2}; auto* x_in_tensor = x_in->MutableVar()->GetMutable(); auto* y_in_tensor = y_in->MutableVar()->GetMutable(); x_in_tensor->Resize(framework::make_ddim(dims1)); auto* mutable_x = x_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_x, place, src_data.data(), sizeof(float) * src_data.size()); y_in_tensor->Resize(framework::make_ddim(dims2)); auto* mutable_y = y_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_y, place, src_data.data(), sizeof(float) * src_data.size()); var_pair x_pair = var_pair("X", vb_vector(1, x_in)); var_pair y_pair = var_pair("Y", vb_vector(1, y_in)); var_pair out_pair = var_pair("Out", vb_vector(1, vout)); imperative::NameVarBaseMap ins = {x_pair, y_pair}; imperative::NameVarBaseMap outs = {out_pair}; framework::AttributeMap mul_attr_map; mul_attr_map["use_mkldnn"] = false; tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true); ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL); ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL); ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) TEST(test_tracer, test_trace_op_with_multi_device_inputs) { // Doing an mul imperative::Tracer tracer; std::shared_ptr x_in( new imperative::VarBase(true, "x_in")); x_in->SetOverridedStopGradient(false); // force to run backward std::shared_ptr y_in( new imperative::VarBase(true, "y_in")); y_in->SetOverridedStopGradient(false); std::shared_ptr vout( new imperative::VarBase(true, "vout")); platform::CPUPlace place; platform::CUDAPlace gpu_place(0); std::vector src_data(10, 2.0); std::vector dims1 = {2, 5}; std::vector dims2 = {2, 5}; auto* x_in_tensor = x_in->MutableVar()->GetMutable(); auto* y_in_tensor = y_in->MutableVar()->GetMutable(); x_in_tensor->Resize(framework::make_ddim(dims1)); auto* mutable_x = x_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_x, place, src_data.data(), sizeof(float) * src_data.size()); y_in_tensor->Resize(framework::make_ddim(dims2)); auto* mutable_y = y_in_tensor->mutable_data(gpu_place); paddle::memory::Copy(gpu_place, mutable_y, place, src_data.data(), sizeof(float) * src_data.size(), 0); var_pair x_pair = var_pair("X", vb_vector(1, x_in)); var_pair y_pair = var_pair("Y", vb_vector(1, y_in)); var_pair out_pair = var_pair("Out", vb_vector(1, vout)); imperative::NameVarBaseMap ins = {x_pair, y_pair}; imperative::NameVarBaseMap outs = {out_pair}; framework::AttributeMap mul_attr_map; mul_attr_map["use_mkldnn"] = false; tracer.TraceOp("elementwise_add", ins, outs, mul_attr_map, gpu_place, true); // run reduce sum std::shared_ptr reduce_sum_out( new imperative::VarBase(true, "reduce_sum_out")); var_pair reduce_sum_in_pair = var_pair("X", vb_vector(1, vout)); var_pair reduce_sum_out_pair = var_pair("Out", vb_vector(1, reduce_sum_out)); imperative::NameVarBaseMap reduce_in = {reduce_sum_in_pair}; imperative::NameVarBaseMap reduce_out = {reduce_sum_out_pair}; framework::AttributeMap reduce_attr_map; tracer.TraceOp("reduce_sum", reduce_in, reduce_out, reduce_attr_map, gpu_place, true); imperative::BasicEngine engine; std::vector> tensors{reduce_sum_out}; std::vector> grad_tensors{nullptr}; engine.Init(tensors, grad_tensors); engine.Execute(); framework::LoDTensor rlt; framework::TensorCopySync(vout->Var().Get(), place, &rlt); for (int i = 0; i < rlt.numel(); i++) { ASSERT_EQ(rlt.data()[i], 4.0); } framework::LoDTensor out_grad; framework::TensorCopySync(vout->GradVar().Get(), place, &out_grad); for (int i = 0; i < out_grad.numel(); ++i) { ASSERT_EQ(out_grad.data()[i], 1.0); } framework::LoDTensor x_grad; framework::TensorCopySync(x_in->GradVar().Get(), place, &x_grad); for (int i = 0; i < x_grad.numel(); ++i) { ASSERT_EQ(x_grad.data()[i], 1.0); } framework::LoDTensor y_grad; framework::TensorCopySync(y_in->GradVar().Get(), place, &y_grad); for (int i = 0; i < y_grad.numel(); ++i) { ASSERT_EQ(y_grad.data()[i], 1.0); } } #endif TEST(test_tracer, test_unique_name_generator) { // generate two unique names imperative::Tracer tracer; auto fc_1 = tracer.GenerateUniqueName("fc"); auto fc_2 = tracer.GenerateUniqueName("fc"); ASSERT_STREQ("fc_0", fc_1.c_str()); ASSERT_STREQ("fc_1", fc_2.c_str()); // use `eager_tmp` as key if not specify it. auto tmp_var_2 = tracer.GenerateUniqueName(); ASSERT_STREQ("dygraph_tmp_2", tmp_var_2.c_str()); auto tmp_var_3 = tracer.GenerateUniqueName("dygraph_tmp"); ASSERT_STREQ("dygraph_tmp_3", tmp_var_3.c_str()); } TEST(test_tracer, test_current_tracer) { // use current_tracer auto tracer = std::make_shared(); imperative::SetCurrentTracer(tracer); auto current_tracer = imperative::GetCurrentTracer(); ASSERT_EQ(current_tracer, tracer); } TEST(test_tracer, test_expected_place) { // default expected place is CPUPlace imperative::Tracer tracer; ASSERT_EQ(platform::is_cpu_place(tracer.ExpectedPlace()), true); { #ifdef PADDLE_WITH_CUDA // set to CUDAPlace platform::CUDAPlace gpu_place(0); tracer.SetExpectedPlace(gpu_place); ASSERT_EQ(platform::is_gpu_place(tracer.ExpectedPlace()), true); #endif } { #ifdef PADDLE_WITH_XPU // set to XPUPlace platform::XPUPlace xpu_place(0); tracer.SetExpectedPlace(xpu_place); ASSERT_EQ(platform::is_xpu_place(tracer.ExpectedPlace()), true); #endif } } TEST(test_tracer, test_var_without_grad_var) { // Doing an mul imperative::Tracer tracer; std::shared_ptr x_in( new imperative::VarBase(true, "x_in")); x_in->ClearGradVarBase(); std::shared_ptr y_in( new imperative::VarBase(true, "y_in")); std::shared_ptr vout( new imperative::VarBase(true, "vout")); x_in->SetOverridedStopGradient(false); y_in->SetOverridedStopGradient(false); platform::CPUPlace place; std::vector src_data(10, 2.0); std::vector dims1 = {2, 5}; std::vector dims2 = {5, 2}; auto* x_in_tensor = x_in->MutableVar()->GetMutable(); auto* y_in_tensor = y_in->MutableVar()->GetMutable(); x_in_tensor->Resize(framework::make_ddim(dims1)); auto* mutable_x = x_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_x, place, src_data.data(), sizeof(float) * src_data.size()); y_in_tensor->Resize(framework::make_ddim(dims2)); auto* mutable_y = y_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_y, place, src_data.data(), sizeof(float) * src_data.size()); var_pair x_pair = var_pair("X", vb_vector(1, x_in)); var_pair y_pair = var_pair("Y", vb_vector(1, y_in)); var_pair out_pair = var_pair("Out", vb_vector(1, vout)); imperative::NameVarBaseMap ins = {x_pair, y_pair}; imperative::NameVarBaseMap outs = {out_pair}; framework::AttributeMap mul_attr_map; mul_attr_map["use_mkldnn"] = false; tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true); const auto& out_tensor = vout->Var().Get(); for (int i = 0; i < vout->Var().Get().numel(); i++) { ASSERT_EQ(out_tensor.data()[i], 20.0); } ASSERT_EQ(x_in->GradVarBase()->GradOpNum(), 0UL); ASSERT_EQ(y_in->GradVarBase()->GradOpNum(), 0UL); ASSERT_EQ(vout->GradVarBase()->GradOpNum(), 1UL); std::vector> tensors{vout}; std::vector> grad_tensors{nullptr}; imperative::BasicEngine engine; engine.Init(tensors, grad_tensors); engine.Execute(); // check the grad framework::LoDTensor x_grad; framework::TensorCopySync(x_in->GradVar().Get(), place, &x_grad); for (int i = 0; i < x_grad.numel(); ++i) { ASSERT_EQ(x_grad.data()[i], 4.0); } framework::LoDTensor y_grad; framework::TensorCopySync(y_in->GradVar().Get(), place, &y_grad); for (int i = 0; i < y_grad.numel(); ++i) { ASSERT_EQ(y_grad.data()[i], 4.0); } } template using WeakPtrSet = std::set, std::owner_less>>; static void TestVarOpDestructionMain(const platform::Place& place, int64_t tensor_size = 10, size_t loop_num = 10) { WeakPtrSet var_wrappers; WeakPtrSet var_bases; WeakPtrSet op_bases; Tracer tracer; { auto x = std::make_shared("x"); auto y = std::make_shared("y"); x->MutableVar() ->GetMutable() ->Resize({tensor_size, tensor_size}) .mutable_data(place); y->MutableVar() ->GetMutable() ->Resize({tensor_size, tensor_size}) .mutable_data(place); x->SetOverridedStopGradient(false); y->SetOverridedStopGradient(true); for (size_t i = 0; i < loop_num; ++i) { size_t var_wrapper_num = var_wrappers.size(); size_t var_base_num = var_bases.size(); size_t op_base_num = op_bases.size(); auto z = std::make_shared("z_" + std::to_string(i)); tracer.TraceOp("mul", NameVarBaseMap{{"X", {x}}, {"Y", {y}}}, NameVarBaseMap{{"Out", {z}}}, framework::AttributeMap{}, place, true); ASSERT_EQ(z->GradOpNum(), 0UL); ASSERT_EQ(z->GradVarBase()->GradOpNum(), 1UL); auto new_op = z->GradVarBase()->GradNode(); ASSERT_EQ(x->GradOpNum(), 0UL); ASSERT_EQ(y->GradOpNum(), 0UL); std::unordered_set> expected_pending_ops; if (i == 0) { ASSERT_EQ(x->GradVarBase()->GradOpNum(), 0UL); ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL); } else { ASSERT_EQ(x->GradVarBase()->GradOpNum(), 1UL); ASSERT_EQ(y->GradVarBase()->GradOpNum(), 0UL); if (x->GradVarBase()->GradNode()) { expected_pending_ops.emplace(x->GradVarBase()->GradNode()); } if (y->GradVarBase()->GradNode()) { expected_pending_ops.emplace(y->GradVarBase()->GradNode()); } std::unordered_set> actual_pending_ops; for (auto& op : new_op->GradPendingNodes()) { actual_pending_ops.emplace(op); } ASSERT_TRUE(expected_pending_ops == actual_pending_ops); ASSERT_EQ(expected_pending_ops.count(new_op), 0UL); } var_wrappers.emplace(x->SharedVar()); var_wrappers.emplace(x->GradVarBase()->SharedVar()); var_wrappers.emplace(y->SharedVar()); var_wrappers.emplace(y->GradVarBase()->SharedVar()); var_wrappers.emplace(z->SharedVar()); var_wrappers.emplace(z->GradVarBase()->SharedVar()); var_bases.emplace(x); var_bases.emplace(x->GradVarBase()); var_bases.emplace(y); var_bases.emplace(y->GradVarBase()); var_bases.emplace(z); var_bases.emplace(z->GradVarBase()); for (auto& op : expected_pending_ops) { op_bases.emplace(op); } if (i == 0) { ASSERT_EQ(var_wrapper_num, 0UL); ASSERT_EQ(var_base_num, 0UL); ASSERT_EQ(op_base_num, 0UL); ASSERT_EQ(var_wrappers.size(), 6UL); ASSERT_EQ(var_bases.size(), 6UL); ASSERT_EQ(op_bases.size(), 0UL); } else { ASSERT_EQ(var_wrappers.size(), var_wrapper_num + 2); ASSERT_EQ(var_bases.size(), var_base_num + 2); ASSERT_EQ(op_bases.size(), op_base_num + 1); } x = z; // recurrent usage } } for (auto& var : var_wrappers) { ASSERT_TRUE(var.expired()); } for (auto& var : var_bases) { ASSERT_TRUE(var.expired()); } for (auto& op : op_bases) { ASSERT_TRUE(op.expired()); } } TEST(test_tracer, test_var_op_destruction) { TestVarOpDestructionMain(platform::CPUPlace()); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) TestVarOpDestructionMain(platform::CUDAPlace(0)); #endif } TEST(test_tracer, test_execution_context) { auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false); framework::Scope scope; auto ctx = framework::RuntimeContext({}, {}); NameVarBaseMap ins = {{"X", {nullptr}}, {"Y", {nullptr}}}; NameVarBaseMap outs = {{"Out", {nullptr}}}; platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(platform::CPUPlace()); auto dy_ctx = DygraphExecutionContext( (*op.get()), scope, *dev_ctx, ctx, ins, outs, framework::AttributeMap{}, framework::AttributeMap{}); ASSERT_EQ(dy_ctx.OutputName("Out"), framework::kEmptyVarName); } TEST(test_tracer, eager_tracer) { // Doing an mul imperative::Tracer tracer; std::shared_ptr x_in(new egr::EagerVariable("x_in")); std::shared_ptr y_in(new egr::EagerVariable("y_in")); std::shared_ptr vout(new egr::EagerVariable("vout")); platform::CPUPlace place; std::vector src_data(10, 2.0); std::vector dims1 = {2, 5}; std::vector dims2 = {5, 2}; auto* x_in_tensor = x_in->MutableVar()->GetMutable(); auto* y_in_tensor = y_in->MutableVar()->GetMutable(); x_in_tensor->Resize(framework::make_ddim(dims1)); auto* mutable_x = x_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_x, place, src_data.data(), sizeof(float) * src_data.size()); y_in_tensor->Resize(framework::make_ddim(dims2)); auto* mutable_y = y_in_tensor->mutable_data(place); paddle::memory::Copy(place, mutable_y, place, src_data.data(), sizeof(float) * src_data.size()); ev_pair x_pair = ev_pair("X", ev_vector(1, x_in)); ev_pair y_pair = ev_pair("Y", ev_vector(1, y_in)); ev_pair out_pair = ev_pair("Out", ev_vector(1, vout)); imperative::NameTensorMap ins = {x_pair, y_pair}; imperative::NameTensorMap outs = {out_pair}; framework::AttributeMap mul_attr_map; mul_attr_map["use_mkldnn"] = false; tracer.TraceOp("mul", ins, outs, mul_attr_map, place, true); const auto& out_tensor = vout->Var().Get(); for (int i = 0; i < vout->Var().Get().numel(); i++) { ASSERT_EQ(out_tensor.data()[i], 20.0); } } } // namespace imperative } // namespace paddle USE_OP(mul); USE_OP(mul_grad); USE_OP(reduce_sum); USE_OP(reduce_sum_grad); USE_OP_ITSELF(elementwise_add);