# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest from test_conv2d_op import conv2d_forward_naive class TestConv2dFusionOp(OpTest): def setUp(self): self.op_type = "conv2d_fusion" self.exhaustive_search = False self.data_format = "AnyLayout" self.dtype = np.float32 self.activation = 'relu' self.add_bias = True self.add_residual_data = True self.channels = None self.outputs = None self.init_group() self.init_dilation() self.init_test_case() self.init_bias_residual() self.init_activation() self.set_search_method() conv2d_param = { 'stride': self.stride, 'pad': self.pad, 'dilation': self.dilations } input = np.random.random(self.input_size).astype(self.dtype) filter = np.random.random(self.filter_size).astype(self.dtype) self.output, _, _, _, _ = conv2d_forward_naive( input, filter, self.groups, conv2d_param) self.output = self.output.astype(self.dtype) self.inputs = { 'Input': OpTest.np_dtype_to_fluid_dtype(input), 'Filter': OpTest.np_dtype_to_fluid_dtype(filter) } if self.add_residual_data: residual_data = np.random.random(self.output.shape).astype( self.dtype) self.inputs['ResidualData'] = OpTest.np_dtype_to_fluid_dtype( residual_data) self.output += residual_data if self.add_bias: bias = np.random.random(self.filter_size[0]).astype(self.dtype) self.inputs['Bias'] = OpTest.np_dtype_to_fluid_dtype(bias) self.output = self.output + bias.reshape((1, bias.size, 1, 1)) assert self.activation in ['relu', 'identity'] if self.activation == 'relu': self.output = np.maximum(self.output, 0) self.attrs = { 'strides': self.stride, 'paddings': self.pad, 'groups': self.groups, 'dilations': self.dilations, 'data_format': self.data_format, 'exhaustive_search': self.exhaustive_search, 'activation': self.activation, 'split_channels': self.channels } self.outputs = {'Output': self.output} self.set_outputs() def has_cuda(self): return core.is_compiled_with_cuda() def test_check_output(self): if self.has_cuda(): place = core.CUDAPlace(0) self.check_output_with_place(place, atol=1e-5) else: pass def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3] def init_dilation(self): self.dilations = [1, 1] def init_group(self): self.groups = 1 def init_bias_residual(self): self.add_bias = True self.add_residual_data = True def init_activation(self): self.activation = 'relu' def set_search_method(self): self.exhaustive_search = False def set_outputs(self): pass class TestWithoutResidual(TestConv2dFusionOp): def init_bias_residual(self): self.add_residual_data = False class TestIdentityActivation(TestConv2dFusionOp): def init_activation(self): self.activation = 'identity' class TestIdentityActivation(TestConv2dFusionOp): def init_activation(self): self.activation = 'identity' self.add_residual_data = False class TestWithGroup(TestConv2dFusionOp): def init_group(self): self.groups = 3 class TestWithDilation(TestConv2dFusionOp): def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.input_size = [2, 3, 10, 10] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [6, f_c, 3, 3] def init_dilation(self): self.dilations = [2, 2] def init_group(self): self.groups = 3 class TestCUDNNExhaustiveSearch(TestConv2dFusionOp): def set_search_method(self): self.exhaustive_search = True class TestMultipleOutputs(TestConv2dFusionOp): def init_test_case(self): self.pad = [1, 1] self.stride = [1, 1] self.input_size = [1, 32, 17, 17] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [126, f_c, 3, 3] self.channels = [84, 42] def set_outputs(self): out1 = self.output[:, 0:84, :, :] out2 = self.output[:, 84:126, :, :] self.outputs['Outputs'] = [('out1', out1), ('out2', out2)] if __name__ == '__main__': unittest.main()