# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import copy import six from ..framework import Parameter, in_dygraph_mode from ..param_attr import ParamAttr from .. import core from six.moves import zip from ..layer_helper_base import LayerHelperBase class LayerObjectHelper(LayerHelperBase): def __init__(self, name): super(LayerObjectHelper, self).__init__(name, layer_type=name) def append_op(self, type=None, inputs=None, outputs=None, attrs=None, stop_gradient=None): """append an operator for this layer object. Args: type: operator type inputs: input variable of the operator dtype: data type of this parameter is_bias: if this is a bias parameter default_initializer: set the default initializer for this parameter Returns created parameter Variable. """ return self.main_program.current_block().append_op( type=type, inputs=inputs, outputs=outputs, attrs=attrs, stop_gradient=stop_gradient) def _multiple_input(self, inputs_in): inputs = inputs_in ret = [] if isinstance(inputs, (list, tuple)): for inp in inputs: ret.append(self.to_variable(inp)) else: ret.append(self.to_variable(inputs)) return ret # TODO: make it public when we need it def _input(self, inputs_in): inputs = self._multiple_input(inputs_in) if len(inputs) != 1: raise "{0} layer only takes one input in".format(self.layer_type) return inputs[0] def _multiple_param_attr(self, length, param_attr_in=None): param_attr = param_attr_in if isinstance(param_attr, ParamAttr): param_attr = [param_attr] if len(param_attr) != 1 and len(param_attr) != length: raise ValueError("parameter number mismatch in {}".format( self.name)) elif len(param_attr) == 1 and length != 1: tmp = [None] * length for i in six.moves.range(length): tmp[i] = copy.deepcopy(param_attr[0]) param_attr = tmp return param_attr def iter_inputs_and_params(self, inputs_in, param_attr_in=None): """Access all inputs and params one by one Args: inputs_in: inputs to be iter param_attr_in: param_attr to be iter Returns input, param_attr """ param_attr_in = ParamAttr._to_attr(param_attr_in) if isinstance(param_attr_in, bool): raise ValueError('Param_attr should not be False in {}'.format( self.name)) inputs = inputs_in if (inputs_in is not None) else [] inputs = self._multiple_input(inputs) param_attrs = self._multiple_param_attr(len(inputs), param_attr_in) for ipt, param_attr in zip(inputs, param_attrs): yield ipt, param_attr def input_dtype(self, inputs_in): """Get input data type Args: inputs_in: inputs wanted know the data type Returns dtype of the input """ inputs_in = inputs_in if (inputs_in is not None) else [] inputs = self._multiple_input(inputs_in) dtype = None for each in inputs: if dtype is None: dtype = each.dtype elif dtype != each.dtype: raise ValueError("Data Type mismatch: %d to %d in %s" % (dtype, each.dtype, self.name)) return dtype def get_parameter(self, name): """Get parameter specifically Args: name: parameter's name Returns target parameter """ param = self.main_program.global_block().var(name) if not isinstance(param, Parameter): raise ValueError("no Parameter name %s found in %s" % (name, self.name)) return param def append_bias_op(self, input_var, dim_start=1, dim_end=None, bias_attr=None): """Append bias operator and return its output. If the user does not set bias_attr, append_bias_op will return input_var Args: input_var: the input variable. The len(input_var.shape) is larger or equal than 2. dim_start: dim_end: the shape of the bias will be bias_attr: the bias_attr of it Return the Variable of after append bias op """ size = list(input_var.shape[dim_start:dim_end]) bias_attr = bias_attr if not bias_attr: return input_var b = self.create_parameter( attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True) tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) self.append_op( type='elementwise_add', inputs={'X': [input_var], 'Y': [b]}, outputs={'Out': [tmp]}, attrs={'axis': dim_start}) return tmp # TODO: this should not be called anymore after all activation func move to Layers def append_activation(self, input_var, act=None, use_cudnn=None, use_mkl_dnn=None): """Append activation Args: input_var: the input variable. The len(input_var.shape) is larger or equal than 2. act: activation type use_mkl_dnn: if use mkldnn use_cudnn: if use cudnn Return the Variable of after append activation """ act = act if act is None: return input_var if isinstance(act, six.string_types): act = {'type': act} else: raise TypeError( str(act) + " should be unicode or str in %s ", self.name) if (use_cudnn is not None) and use_cudnn: act['use_cudnn'] = use_cudnn if (use_mkl_dnn is not None) and use_mkl_dnn: act['use_mkldnn'] = use_mkl_dnn act_type = act.pop('type') tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) self.append_op( type=act_type, inputs={"X": [input_var]}, outputs={"Out": [tmp]}, attrs=act) return tmp def is_instance(self, param, cls): """Check if the input parameter is instance of input class Args: param: parameter to be check cls: class of the parameter Return result of the check (True or False) """ param = param if not isinstance(param, cls): raise TypeError( "The input {0} parameter of method {1} must be {2}, in layer {3}", param, self.layer_type, cls.__name__, self.name)