// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "paddle/fluid/operators/distributed/parameter_recv.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/operators/distributed/distributed.h" #include "paddle/fluid/operators/distributed/rpc_client.h" #include "paddle/fluid/operators/distributed/variable_response.h" #include "paddle/fluid/operators/distributed_ops/send_recv_util.h" #include "paddle/fluid/operators/strided_memcpy.h" namespace paddle { namespace operators { namespace distributed { using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; using DDim = framework::DDim; template void ParameterRecv::operator()(const RpcContext &rpc_ctx, const framework::Scope &scope) { VLOG(3) << "ParameterRecv in " << rpc_ctx.var_name; std::unique_ptr local_scope = scope.NewTmpScope(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &cpu_ctx = *pool.Get(platform::CPUPlace()); distributed::RPCClient *rpc_client = distributed::RPCClient::GetInstance(rpc_ctx.trainer_id); auto *recv_var = scope.FindVar(rpc_ctx.var_name); // recv all vars to local scope if (recv_var->IsType()) { std::vector rets; for (size_t i = 0; i < rpc_ctx.splited_var_names.size(); i++) { auto &recv_var_name = rpc_ctx.splited_var_names[i]; local_scope->Var(recv_var_name); VLOG(3) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i]; rets.push_back(rpc_client->AsyncGetVar(rpc_ctx.epmap[i], cpu_ctx, *local_scope.get(), recv_var_name, recv_var_name)); } for (size_t i = 0; i < rets.size(); i++) { PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient"); } } else { PADDLE_THROW("unsupported var type to recv!"); } // concat recved tensor into one var { size_t output_offset = 0; size_t row_offset = 0; framework::Tensor *recv_tensor = recv_var->GetMutable(); auto dev_ctx = paddle::platform::CPUDeviceContext(); int64_t recv_numel = 0; for (auto &recv_var_name : rpc_ctx.splited_var_names) { auto *recv_var = local_scope->FindVar(recv_var_name); if (recv_var->IsType()) { auto &in = recv_var->Get(); recv_numel += in.numel(); auto in_stride = framework::stride_numel(in.dims()); auto out_stride = framework::stride_numel(recv_tensor->dims()); StridedNumelCopyWithAxis( dev_ctx, 0, recv_tensor->data() + output_offset, out_stride, in.data(), in_stride, in_stride[0]); output_offset += in_stride[0]; } else if (recv_var->IsType()) { auto &recv_slr = recv_var->Get(); auto &recv_dims = recv_tensor->dims(); int64_t width = recv_dims[1]; recv_numel += recv_slr.height() * width; PADDLE_ENFORCE_EQ(recv_slr.value().dims()[1], width); PADDLE_ENFORCE_EQ(recv_slr.value().dims()[0], recv_slr.rows().size()); VLOG(3) << "recv slr " << recv_var_name << " dims " << recv_slr.value().dims(); if (VLOG_IS_ON(3)) { std::ostringstream sstream; sstream << "["; for (auto &row_id : recv_slr.rows()) { sstream << row_id << ", "; } sstream << "]"; VLOG(3) << "recv_slr size: " << recv_slr.rows().size() << " " << sstream.str(); } for (auto i = 0; i < recv_slr.rows().size(); ++i) { auto row_id = recv_slr.rows()[i] + row_offset; PADDLE_ENFORCE_LT(row_id, recv_dims[0]); memcpy(recv_tensor->data() + row_id * width, recv_slr.value().data() + i * width, sizeof(T) * width); } row_offset += recv_slr.height(); } else { PADDLE_THROW("unsupported recieved var type"); } } auto numel = recv_tensor->numel(); if (recv_numel != numel) { LOG(FATAL) << "recv_numel: " << recv_numel << " acture numel: " << numel; } PADDLE_ENFORCE_EQ(recv_numel, numel); } VLOG(3) << "ParameterRecv out " << rpc_ctx.var_name; } template struct ParameterRecv; }; // namespace distributed }; // namespace operators }; // namespace paddle