/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/rrelu_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/distribution_helper.h" #include "paddle/phi/kernels/funcs/for_range.h" namespace phi { template struct RReluTrainCudaFunctor { public: RReluTrainCudaFunctor(const T* in, T* out, T* noise) : in_(in), out_(out), noise_(noise) { zero_ = static_cast(0); } __device__ void operator()(int64_t idx) { T x = in_[idx]; if (x < zero_) { out_[idx] = noise_[idx] * x; } else { out_[idx] = x; noise_[idx] = 1.0; } } private: const T* in_; T* out_; T* noise_; T zero_; }; template struct RReluTestCudaFunctor { public: RReluTestCudaFunctor(const T* in, T* out, T* noise, T mid_val) : in_(in), out_(out), noise_(noise), mid_val_(mid_val) { zero_ = static_cast(0); } __device__ void operator()(int64_t idx) { T x = in_[idx]; if (x < zero_) { out_[idx] = mid_val_ * x; noise_[idx] = mid_val_; } else { out_[idx] = x; noise_[idx] = 1.0; } } private: const T* in_; T* out_; T* noise_; T zero_; T mid_val_; }; template void RReluKernel(const Context& ctx, const DenseTensor& x, const float lower, const float upper, bool is_test, DenseTensor* out, DenseTensor* noise) { const T* x_data = x.data(); T* out_data = ctx.template Alloc(out); T* noise_data = ctx.template Alloc(noise); auto size = x.numel(); if (size <= 0) return; phi::funcs::ForRange for_range(ctx, size); if (is_test) { T mid_val = static_cast((lower + upper) / 2.0); RReluTestCudaFunctor functor(x_data, out_data, noise_data, mid_val); for_range(functor); } else { using MT = typename kps::details::MPTypeTrait::Type; funcs::uniform_distribution dist; funcs::uniform_real_transform trans(lower, upper); funcs::distribution_and_transform(ctx, noise, dist, trans); RReluTrainCudaFunctor functor(x_data, out_data, noise_data); for_range(functor); } } } // namespace phi PD_REGISTER_KERNEL(rrelu, GPU, ALL_LAYOUT, phi::RReluKernel, float, phi::dtype::float16, double) {}