// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/p_norm_grad_kernel.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/reduce_grad_functions.h" namespace phi { template struct AbsMaxAndMinGradFunctor { template void operator()(const Context& place, X* x, Y* y, DX* dx, DY* dy, const Dim& dim, int size) { dx->device(place) = dy->broadcast(dim) * (*x).sign() * ((*x).abs() == y->broadcast(dim)).template cast(); } }; template struct PNormGradFunctor { HOSTDEVICE explicit inline PNormGradFunctor(float porder, float eps) { this->porder = static_cast(porder - 1.); this->eps = static_cast(eps); } template void operator()(const Context& place, X* x, Y* y, DX* dx, DY* dy, const Dim& dim, int size) { dx->device(place) = (*x).abs().pow(this->porder) * (*x).sign() * dy->broadcast(dim) * (*y + y->constant(eps)).pow(-this->porder).broadcast(dim); } T porder; T eps; }; template void PNormGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out, const DenseTensor& out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector, DenseTensor* x_grad) { auto* in_x = &x; auto* in_norm = &out; auto* in_norm_dy = &out_grad; auto* out_dx = x_grad; dev_ctx.template Alloc(out_dx); auto xdim = in_x->dims(); bool reduce_all = (in_norm->numel() == 1); if (axis < 0) axis = xdim.size() + axis; const std::vector dims = {axis}; if (porder == 0) { phi::funcs::SetConstant set_zero; set_zero(dev_ctx, out_dx, static_cast(0)); } else if (porder == INFINITY || porder == -INFINITY) { AbsMaxAndMinGradFunctor functor; funcs::LaunchReduceGradKernel>( dev_ctx, in_x, in_norm, in_norm_dy, out_dx, functor, dims, reduce_all); } else { auto functor = PNormGradFunctor(porder, epsilon); funcs::LaunchReduceGradKernel>( dev_ctx, in_x, in_norm, in_norm_dy, out_dx, functor, dims, reduce_all); } } } // namespace phi PD_REGISTER_KERNEL(p_norm_grad, GPU, ALL_LAYOUT, phi::PNormGradKernel, float, double, phi::dtype::float16, phi::dtype::bfloat16) {}