import unittest import numpy as np from op_test import OpTest import math def find_latest_set(num): return 1 + int(math.floor(math.log(num, 2))) class CodeTable(object): def __init__(self, num_classes, code): self.c = num_classes + code def cal_index(self, bit): return (self.c >> (bit + 1)) - 1 def get_length(self): return find_latest_set(self.c) - 1 def cal_bit(self, bit): return self.c & (1 << bit) def hsigmoid(x, w, ids, bias, num_classes): # code length = # initialize pre out with dims={batch_size, code_length} batch_size = x.shape[0] code_length = find_latest_set(num_classes - 1) code_table = [0 for _ in range(code_length)] pre_output = np.zeros((batch_size, code_length)) pre_sum = np.zeros((batch_size, 1)) out = np.zeros((batch_size, 1)).astype("float32") # pre_out += code(bias) for i in xrange(batch_size): code_table = CodeTable(num_classes, ids[i]) length = code_table.get_length() for j in xrange(length): idx = code_table.cal_index(j) pre_output[i][j] += bias[0][idx] # pre_out += code(w) * x for i in xrange(batch_size): for j in xrange(batch_size): code_table = CodeTable(num_classes, ids[j]) length = code_table.get_length() for k in xrange(length): idx = code_table.cal_index(k) sum = 0.0 for l in xrange(x.shape[1]): sum += w[i][idx][l] * x[j][l] pre_output[j][k] += sum # clip[-40.0, 40.0] np.clip(pre_output, -40.0, 40.0) # out(i, 0) = \sum_j bit(i, j) * preout(i, j) for i in xrange(batch_size): code_table = CodeTable(num_classes, ids[i]) length = code_table.get_length() sum = 0.0 for j in xrange(length): if code_table.cal_bit(j): sum += pre_output[i][j] out[i] = -1.0 * sum # soft relu np.clip(pre_output, -40.0, 40.0) pre_output = np.log(1 + np.exp(pre_output)) pre_sum = pre_output.sum(1).reshape((batch_size, 1)) out += pre_sum return out class TestHSigmoidOp(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" num_classes = 6 embded_size = 10 batch_size = 5 x = np.random.random((batch_size, embded_size)).astype("float32") w = np.random.random( (batch_size, num_classes - 1, embded_size)).astype("float32") ids = np.random.randint(0, num_classes, batch_size) bias = np.random.random((1, num_classes - 1)).astype("float32") self.inputs = {'X': x, 'W': w, 'Ids': ids, 'Bias': bias} self.attrs = {'num_classes': num_classes} out = hsigmoid(x, w, ids, bias, num_classes) self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'W', 'Bias'], 'Out', no_grad_set=set('Ids')) if __name__ == '__main__': unittest.main()