# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define distributed api under this directory, from .base.role_maker import Role # noqa: F401 from .base.role_maker import UserDefinedRoleMaker # noqa: F401 from .base.role_maker import PaddleCloudRoleMaker # noqa: F401 from .base.distributed_strategy import DistributedStrategy # noqa: F401 from .base.util_factory import UtilBase # noqa: F401 from .dataset import DatasetBase # noqa: F401 from .dataset import InMemoryDataset # noqa: F401 from .dataset import QueueDataset # noqa: F401 from .dataset import FileInstantDataset # noqa: F401 from .dataset import BoxPSDataset # noqa: F401 from .data_generator.data_generator import MultiSlotDataGenerator # noqa: F401 from .data_generator.data_generator import MultiSlotStringDataGenerator # noqa: F401 from . import metrics # noqa: F401 from .base.topology import CommunicateTopology from .base.topology import HybridCommunicateGroup # noqa: F401 from .fleet import Fleet from .model import distributed_model from .optimizer import distributed_optimizer from .scaler import distributed_scaler from .utils import log_util __all__ = [ #noqa "CommunicateTopology", "UtilBase", "HybridCommunicateGroup", "MultiSlotStringDataGenerator", "UserDefinedRoleMaker", "DistributedStrategy", "Role", "MultiSlotDataGenerator", "PaddleCloudRoleMaker", "Fleet" ] fleet = Fleet() _final_strategy = fleet._final_strategy _get_applied_meta_list = fleet._get_applied_meta_list _get_applied_graph_list = fleet._get_applied_graph_list init = fleet.init is_first_worker = fleet.is_first_worker worker_index = fleet.worker_index worker_num = fleet.worker_num node_num = fleet.node_num rank = fleet.worker_index nranks = fleet.worker_num world_size = fleet.worker_num # device id in current trainer local_device_ids = fleet.local_device_ids # device ids in world world_device_ids = fleet.world_device_ids # rank in node local_rank = fleet.local_rank rank_in_node = local_rank is_worker = fleet.is_worker is_coordinator = fleet.is_coordinator init_coordinator = fleet.init_coordinator make_fl_strategy = fleet.make_fl_strategy get_fl_client = fleet.get_fl_client worker_endpoints = fleet.worker_endpoints server_num = fleet.server_num server_index = fleet.server_index server_endpoints = fleet.server_endpoints is_server = fleet.is_server util = UtilBase() barrier_worker = fleet.barrier_worker init_worker = fleet.init_worker init_server = fleet.init_server run_server = fleet.run_server stop_worker = fleet.stop_worker distributed_optimizer = distributed_optimizer save_inference_model = fleet.save_inference_model save_persistables = fleet.save_persistables save_cache_model = fleet.save_cache_model check_save_pre_patch_done = fleet.check_save_pre_patch_done save_one_table = fleet.save_one_table save_dense_params = fleet.save_dense_params load_model = fleet.load_model load_inference_model = fleet.load_inference_model load_one_table = fleet.load_one_table minimize = fleet.minimize distributed_model = distributed_model shrink = fleet.shrink get_hybrid_communicate_group = fleet.get_hybrid_communicate_group distributed_scaler = distributed_scaler set_log_level = log_util.set_log_level get_log_level_code = log_util.get_log_level_code get_log_level_name = log_util.get_log_level_name from .. import auto_parallel as auto