// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/errors.h" #define MAX_RANK_SUPPORTED 6 #define MESHGRID_TEMPLATE(z, n, data) \ case n + 1: { \ MeshgridForward(context); \ break; \ } #define REP_MESHGRID_TEMPLATE(n) BOOST_PP_REPEAT(n, MESHGRID_TEMPLATE, ~) #define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED)) #define MESHGRID_GRAD_CASE(n) \ case n: { \ MeshgridBackward(context); \ break; \ } #define MESHGRID_GRAD_TEMPLATE(z, n, data) \ BOOST_PP_IF(COND(n), MESHGRID_GRAD_CASE(n), ) #define REP_MESHGRID_GRAD_TEMPLATE(n) \ BOOST_PP_REPEAT(n, MESHGRID_GRAD_TEMPLATE, ~) namespace paddle { namespace operators { template class MeshgridKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto ins = context.MultiInput("X"); auto rank = ins.size(); switch (rank) { REP_MESHGRID_TEMPLATE(MAX_RANK_SUPPORTED) default: PADDLE_THROW(platform::errors::InvalidArgument( "Only support tensor nums between 1 and 6.")); } } protected: template void MeshgridForward(const framework::ExecutionContext& context) const { auto ins = context.MultiInput("X"); auto outs = context.MultiOutput("Out"); PADDLE_ENFORCE_EQ( ins.size() > 1, true, platform::errors::InvalidArgument("expect at least 2 input tensors")); int64_t size = ins.size(); std::vector shape(size); for (int64_t i = 0; i < size; i++) { switch (ins[i]->dims().size()) { case 0: shape[i] = 1; break; case 1: shape[i] = ins[i]->dims()[0]; break; default: PADDLE_THROW(platform::errors::InvalidArgument( "Expected scalar or 1D tensor in the tensor list but got tensor " "%d: ", i)); } } for (int64_t i = 0; i < size; i++) { std::vector view_shape(size, 1); view_shape[i] = shape[i]; framework::Tensor reshape_ins_tensor; TensorCopy(*ins[i], context.GetPlace(), context.device_context(), &reshape_ins_tensor); framework::DDim out_dims_reshape = framework::make_ddim(view_shape); reshape_ins_tensor.Resize(out_dims_reshape); framework::DDim out_dims = framework::make_ddim(shape); Eigen::DSizes bcast_dims; for (int64_t j = 0; j < size; j++) { bcast_dims[j] = shape[j]; } bcast_dims[i] = 1; outs[i]->Resize(out_dims); auto x = framework::EigenTensor::From(reshape_ins_tensor); outs[i]->mutable_data(context.GetPlace()); auto y = framework::EigenTensor::From(*outs[i]); auto& place = *context.template device_context().eigen_device(); y.device(place) = x.broadcast(bcast_dims); } } }; template class MeshgridGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto out_grad = context.MultiInput(framework::GradVarName("Out")); int n = out_grad.size(); switch (n) { REP_MESHGRID_GRAD_TEMPLATE(MAX_RANK_SUPPORTED) default: PADDLE_THROW(platform::errors::InvalidArgument( "only support tensor nums being between 1 and 6.")); } } protected: template void MeshgridBackward(const framework::ExecutionContext& context) const { auto out_grad = context.MultiInput(framework::GradVarName("Out")); auto ins = context.MultiInput("X"); auto outs = context.MultiOutput(framework::GradVarName("X")); int n = out_grad.size(); auto out_dims = out_grad[0]->dims(); for (int i = 0; i < n; i++) { outs[i]->mutable_data(context.GetPlace()); auto out_grad_tmp = framework::EigenVector::Flatten(*out_grad[i]); auto in_grad = framework::EigenVector::Flatten(*outs[i]); std::vector reduce_dims_vec; std::vector reshape_dims_vec; for (int j = 0; j < n; j++) { reduce_dims_vec.push_back(reshape_dims_vec.size()); if (j == i) { reshape_dims_vec.push_back(1); reshape_dims_vec.push_back(out_dims[j]); } else { reshape_dims_vec.push_back(out_dims[j]); reshape_dims_vec.push_back(1); } } Eigen::DSizes reduce_dims; for (int k = 0; k < n; k++) { reduce_dims[k] = reduce_dims_vec[k]; } Eigen::DSizes reshape_dims; for (int k = 0; k < n * 2; k++) { reshape_dims[k] = reshape_dims_vec[k]; } auto tensor_reduce_tmp = out_grad_tmp.reshape(reshape_dims).sum(reduce_dims); auto& place = *context.template device_context().eigen_device(); in_grad.device(place) = tensor_reduce_tmp.reshape(in_grad.dimensions()); } } }; } // namespace operators } // namespace paddle