/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "gflags/gflags.h" #include "gtest/gtest.h" #include "paddle/fluid/inference/tests/test_helper.h" DEFINE_string(dirname, "", "Directory of the inference model."); DEFINE_string(fp16_dirname, "", "Directory of the float16 inference model."); DEFINE_int32(batch_size, 1, "Batch size of input data"); DEFINE_int32(repeat, 1, "Running the inference program repeat times"); DEFINE_bool(skip_cpu, false, "Skip the cpu test"); TEST(inference, image_classification) { if (FLAGS_dirname.empty() || FLAGS_batch_size < 1 || FLAGS_repeat < 1) { LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model " "--batch_size=1 --repeat=1"; } LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl; std::string dirname = FLAGS_dirname; // 0. Call `paddle::framework::InitDevices()` initialize all the devices // In unittests, this is done in paddle/testing/paddle_gtest_main.cc const bool is_combined = false; std::vector> feed_target_shapes = GetFeedTargetShapes(dirname, is_combined); paddle::framework::LoDTensor input; // Use normilized image pixels as input data, // which should be in the range [0.0, 1.0]. feed_target_shapes[0][0] = FLAGS_batch_size; paddle::framework::DDim input_dims = paddle::framework::make_ddim(feed_target_shapes[0]); LOG(INFO) << input_dims; SetupTensor(&input, input_dims, static_cast(0), static_cast(1)); std::vector cpu_feeds; cpu_feeds.push_back(&input); paddle::framework::FetchType output1; if (!FLAGS_skip_cpu) { std::vector cpu_fetchs1; cpu_fetchs1.push_back(&output1); // Run inference on CPU LOG(INFO) << "--- CPU Runs: ---"; LOG(INFO) << "Batch size is " << FLAGS_batch_size; TestInference( dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined); LOG(INFO) << boost::get(output1).dims(); } #ifdef PADDLE_WITH_CUDA paddle::framework::FetchType output2; std::vector cpu_fetchs2; cpu_fetchs2.push_back(&output2); // Run inference on CUDA GPU LOG(INFO) << "--- GPU Runs: ---"; LOG(INFO) << "Batch size is " << FLAGS_batch_size; TestInference( dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat, is_combined); LOG(INFO) << boost::get(output2).dims(); if (!FLAGS_skip_cpu) { CheckError(boost::get(output1), boost::get(output2)); } // float16 inference requires cuda GPUs with >= 5.3 compute capability if (!FLAGS_fp16_dirname.empty() && paddle::platform::GetCUDAComputeCapability(0) >= 53) { paddle::framework::FetchType output3; std::vector cpu_fetchs3; cpu_fetchs3.push_back(&output3); LOG(INFO) << "--- GPU Runs in float16 mode: ---"; LOG(INFO) << "Batch size is " << FLAGS_batch_size; TestInference( FLAGS_fp16_dirname, cpu_feeds, cpu_fetchs3, FLAGS_repeat); CheckError(boost::get(output2), boost::get(output3)); } #endif }