/* Copyright (c) 2022 paddlepaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/unpooling.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" namespace paddle { namespace operators { namespace math { template __global__ void KernelUnpool2dMax(const int nthreads, const T* input_data, const int* indices_data, const int input_height, const int input_width, const int channels, T* output_data, const int output_height, const int output_width) { CUDA_KERNEL_LOOP(linearIndex, nthreads) { int c = (linearIndex / input_width / input_height) % channels; int n = linearIndex / input_width / input_height / channels; output_data += (n * channels + c) * output_height * output_width; int maxind = indices_data[linearIndex]; output_data[maxind] = input_data[linearIndex]; } } template __global__ void KernelUnpool2dMaxGrad( const int nthreads, const T* input_data, const int* indices_data, const int input_height, const int input_width, const int channels, const T* output_data, const T* output_grad, const int output_height, const int output_width, T* input_grad) { CUDA_KERNEL_LOOP(linearIndex, nthreads) { int c = (linearIndex / input_width / input_height) % channels; int n = linearIndex / input_width / input_height / channels; output_grad += (n * channels + c) * output_height * output_width; int maxind = indices_data[linearIndex]; input_grad[linearIndex] = output_grad[maxind]; } } /* * All tensors are in NCHW format. */ template __global__ void KernelUnpool3dMax(const int nthreads, const T* input_data, const int* indices_data, const int input_depth, const int input_height, const int input_width, const int channels, T* output_data, const int output_depth, const int output_height, const int output_width) { CUDA_KERNEL_LOOP(linearIndex, nthreads) { int c = (linearIndex / input_depth / input_width / input_height) % channels; int n = linearIndex / input_depth / input_width / input_height / channels; output_data += (n * channels + c) * output_depth * output_height * output_width; int maxind = indices_data[linearIndex]; output_data[maxind] = input_data[linearIndex]; } } template __global__ void KernelUnpool3dMaxGrad( const int nthreads, const T* input_data, const int* indices_data, const int input_depth, const int input_height, const int input_width, const int channels, const T* output_data, const T* output_grad, const int output_depth, const int output_height, const int output_width, T* input_grad) { CUDA_KERNEL_LOOP(linearIndex, nthreads) { int c = (linearIndex / input_depth / input_width / input_height) % channels; int n = linearIndex / input_depth / input_width / input_height / channels; output_grad += (n * channels + c) * output_depth * output_height * output_width; int maxind = indices_data[linearIndex]; input_grad[linearIndex] = output_grad[maxind]; } } /* * All tensors are in NCDHW format. */ template class Unpool2dMaxFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output) { const int batch_size = input.dims()[0]; const int input_height = input.dims()[2]; const int input_width = input.dims()[3]; const int output_channels = output->dims()[1]; const int output_height = output->dims()[2]; const int output_width = output->dims()[3]; const T* input_data = input.data(); const int* indices_data = indices.data(); T* output_data = output->mutable_data(context.GetPlace()); #ifdef __HIPCC__ int threads = 256; #else int threads = 1024; #endif int grid = (input.numel() + threads - 1) / threads; KernelUnpool2dMax<<>>( input.numel(), input_data, indices_data, input_height, input_width, output_channels, output_data, output_height, output_width); } }; /* * All tensors are in NCHW format. */ template class Unpool2dMaxGradFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, const framework::Tensor& output_grad, framework::Tensor* input_grad) { const int batch_size = input.dims()[0]; const int input_height = input.dims()[2]; const int input_width = input.dims()[3]; const int output_channels = output.dims()[1]; const int output_height = output.dims()[2]; const int output_width = output.dims()[3]; const T* input_data = input.data(); const int* indices_data = indices.data(); const T* output_data = output.data(); const T* output_grad_data = output_grad.data(); T* input_grad_data = input_grad->mutable_data(context.GetPlace()); #ifdef __HIPCC__ int threads = 256; #else int threads = 1024; #endif int grid = (input.numel() + threads - 1) / threads; KernelUnpool2dMaxGrad<<>>( input.numel(), input_data, indices_data, input_height, input_width, output_channels, output_data, output_grad_data, output_height, output_width, input_grad_data); } }; template class Unpool3dMaxFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output) { const int batch_size = input.dims()[0]; const int input_depth = input.dims()[2]; const int input_height = input.dims()[3]; const int input_width = input.dims()[4]; const int output_channels = output->dims()[1]; const int output_depth = output->dims()[2]; const int output_height = output->dims()[3]; const int output_width = output->dims()[4]; const T* input_data = input.data(); const int* indices_data = indices.data(); T* output_data = output->mutable_data(context.GetPlace()); #ifdef __HIPCC__ int threads = 256; #else int threads = 1024; #endif int grid = (input.numel() + threads - 1) / threads; KernelUnpool3dMax<<>>( input.numel(), input_data, indices_data, input_depth, input_height, input_width, output_channels, output_data, output_depth, output_height, output_width); } }; /* * All tensors are in NCDHW format. */ template class Unpool3dMaxGradFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, const framework::Tensor& output_grad, framework::Tensor* input_grad) { const int batch_size = input.dims()[0]; const int input_depth = input.dims()[2]; const int input_height = input.dims()[3]; const int input_width = input.dims()[4]; const int output_channels = output.dims()[1]; const int output_depth = output.dims()[2]; const int output_height = output.dims()[3]; const int output_width = output.dims()[4]; const T* input_data = input.data(); const int* indices_data = indices.data(); const T* output_data = output.data(); const T* output_grad_data = output_grad.data(); T* input_grad_data = input_grad->mutable_data(context.GetPlace()); #ifdef __HIPCC__ int threads = 256; #else int threads = 1024; #endif int grid = (input.numel() + threads - 1) / threads; KernelUnpool3dMaxGrad<<>>( input.numel(), input_data, indices_data, input_depth, input_height, input_width, output_channels, output_data, output_grad_data, output_depth, output_height, output_width, input_grad_data); } }; template class Unpool2dMaxGradFunctor; template class Unpool2dMaxGradFunctor; template class Unpool2dMaxFunctor; template class Unpool2dMaxFunctor; template class Unpool3dMaxGradFunctor; template class Unpool3dMaxGradFunctor; template class Unpool3dMaxFunctor; template class Unpool3dMaxFunctor; } // namespace math } // namespace operators } // namespace paddle