# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid class TestGatherOp(OpTest): def setUp(self): self.op_type = "gather" self.config() xnp = np.random.random(self.x_shape).astype(self.x_type) self.inputs = { 'X': xnp, 'Index': np.array(self.index).astype(self.index_type) } self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def config(self): """ For multi-dimension input """ self.x_shape = (10, 20) self.x_type = "float64" self.index = [1, 3, 5] self.index_type = "int32" class TestCase1(TestGatherOp): def config(self): """ For one dimension input """ self.x_shape = (100) self.x_type = "float64" self.index = [1, 3, 5] self.index_type = "int32" class TestCase2(TestGatherOp): def config(self): """ For int64_t index type """ self.x_shape = (100) self.x_type = "float64" self.index = [1, 3, 5] self.index_type = "int64" class TestCase3(TestGatherOp): def config(self): """ For other input type """ self.x_shape = (10, 20) self.x_type = "float64" self.index = [1, 3, 5] self.index_type = "int64" class TestCase4(TestGatherOp): def config(self): self.x_shape = (10, 20) self.attrs = {'overwrite': False} self.x_type = "double" self.index = [1, 1] self.index_type = "int32" class TestCase5(TestGatherOp): def config(self): self.x_shape = (10, 20) self.attrs = {'overwrite': False} self.x_type = "float64" self.index = [1, 1, 3] self.index_type = "int32" class TestCase6(TestGatherOp): def config(self): self.x_shape = (10, 20) self.attrs = {'overwrite': True} self.x_type = "float64" self.index = [1, 3] self.index_type = "int32" class API_TestGather(unittest.TestCase): def test_out(self): with fluid.program_guard(fluid.Program(), fluid.Program()): data1 = fluid.layers.data('data1', shape=[-1, 2], dtype='float64') index = fluid.layers.data('index', shape=[-1, 1], dtype='float64') out = paddle.gather(data1, index) place = fluid.CPUPlace() exe = fluid.Executor(place) input = np.array([[1, 2], [3, 4], [5, 6]]) index_1 = np.array([1, 2]) result, = exe.run(feed={"data1": input, "index": index_1}, fetch_list=[out]) expected_output = np.array([[3, 4], [5, 6]]) self.assertTrue(np.allclose(result, expected_output)) class API_TestDygraphGather(unittest.TestCase): def test_out(self): with fluid.dygraph.guard(): input_1 = np.array([[1, 2], [3, 4], [5, 6]]) index_1 = np.array([1, 2]) input = fluid.dygraph.to_variable(input_1) index = fluid.dygraph.to_variable(index_1) output = paddle.fluid.layers.gather(input, index) output_np = output.numpy() expected_output = np.array([[3, 4], [5, 6]]) self.assertTrue(np.allclose(output_np, expected_output)) if __name__ == "__main__": unittest.main()