# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import contextlib import unittest from functools import partial import numpy as np import paddle import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import compiler def get_places(): places = [] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places @contextlib.contextmanager def prog_scope_guard(main_prog, startup_prog): scope = fluid.core.Scope() with fluid.unique_name.guard(): with fluid.scope_guard(scope): with fluid.program_guard(main_prog, startup_prog): yield def bow_net(data, label, dict_dim, is_sparse=False, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2): """ BOW net This model is from https://github.com/PaddlePaddle/models: fluid/PaddleNLP/text_classification/nets.py """ emb = fluid.layers.embedding( input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim]) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) return avg_cost class TestWeightDecay(unittest.TestCase): def setUp(self): self.word_dict = paddle.dataset.imdb.word_dict() reader = paddle.batch( paddle.dataset.imdb.train(self.word_dict), batch_size=4)() self.train_data = [next(reader) for _ in range(5)] self.learning_rate = .5 def run_executor(self, place, feed_list, loss): exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) exe.run(fluid.default_startup_program()) main_prog = fluid.default_main_program() loss_set = [] for data in self.train_data: out = exe.run(main_prog, feed=feeder.feed(data), fetch_list=[loss.name]) print("loss %s" % (np.average(out))) loss_set.append(np.average(out)) return loss_set def run_parallel_exe(self, place, feed_list, loss, use_reduce=False, use_fast_executor=False, use_ir_memory_optimize=False): exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) exe.run(fluid.default_startup_program()) exec_strategy = fluid.ExecutionStrategy() if use_fast_executor: exec_strategy.use_experimental_executor = True build_strategy = fluid.BuildStrategy() build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \ if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce build_strategy.memory_optimize = use_ir_memory_optimize train_cp = compiler.CompiledProgram(fluid.default_main_program( )).with_data_parallel( loss_name=loss.name, exec_strategy=exec_strategy, build_strategy=build_strategy) loss_set = [] for data in self.train_data: out = exe.run(train_cp, feed=feeder.feed(data), fetch_list=[loss.name]) loss_set.append(np.average(out)) return loss_set def check_weight_decay(self, place, model, use_parallel_exe=False, use_reduce=False): main_prog = fluid.framework.Program() startup_prog = fluid.framework.Program() startup_prog.random_seed = 1 with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") avg_cost = model(data, label, len(self.word_dict)) param_list = [(var, var * self.learning_rate) for var in main_prog.block(0).all_parameters()] optimizer = fluid.optimizer.Adagrad( learning_rate=self.learning_rate) optimizer.minimize(avg_cost) for params in param_list: updated_p = fluid.layers.elementwise_sub( x=params[0], y=params[1]) fluid.layers.assign(input=updated_p, output=params[0]) if use_parallel_exe: loss = self.run_parallel_exe( place, [data, label], loss=avg_cost, use_reduce=use_reduce) else: loss = self.run_executor(place, [data, label], loss=avg_cost) return loss def test_weight_decay(self): model = partial(bow_net, is_sparse=False) for place in get_places(): loss = self.check_weight_decay(place, model, use_parallel_exe=False) loss2 = self.check_weight_decay( place, model, use_parallel_exe=True, use_reduce=False) for i in range(len(loss)): self.assertTrue( np.isclose( a=loss[i], b=loss2[i], rtol=5e-5), "Expect " + str(loss[i]) + "\n" + "But Got" + str(loss2[i]) + " in class " + self.__class__.__name__) loss3 = self.check_weight_decay( place, model, use_parallel_exe=True, use_reduce=True) for i in range(len(loss)): self.assertTrue( np.isclose( a=loss[i], b=loss3[i], rtol=5e-5), "Expect " + str(loss[i]) + "\n" + "But Got" + str(loss2[i]) + " in class " + self.__class__.__name__) if __name__ == '__main__': unittest.main()