// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/graph_pattern_detector.h" #include "paddle/fluid/framework/ir/graph_traits.h" #include "paddle/fluid/framework/ir/graph_viz_pass.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/string/pretty_log.h" #include "paddle/fluid/string/printf.h" namespace paddle { namespace framework { namespace ir { using string::PrettyLog; using string::Style; size_t PDPattern::id_ = 0UL; PDNode *PDPattern::NewNode(const std::string &name) { if (!name.empty()) { PADDLE_ENFORCE_EQ( node_map_.count(name), 0UL, platform::errors::PreconditionNotMet( "PDNode's name should be unique, get duplicate [%s]", name)); } nodes_.emplace_back(new PDNode(this, name)); auto *cur = nodes_.back().get(); node_map_[name] = cur; return cur; } PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) { if (!name.empty()) { PADDLE_ENFORCE_EQ( node_map_.count(name), 0UL, platform::errors::PreconditionNotMet( "PDNode's name should be unique, get duplicate [%s]", name)); } nodes_.emplace_back(new PDNode(std::move(teller), this, name)); auto *cur = nodes_.back().get(); node_map_[name] = cur; return cur; } PDNode *PDPattern::RetrieveNode(const std::string &id) const { auto it = node_map_.find(id); if (it == node_map_.end()) { return nullptr; } return it->second; } void PDPattern::AddEdge(PDNode *a, PDNode *b) { PADDLE_ENFORCE_NOT_NULL( a, platform::errors::NotFound("PDNode %s is not found.", a->name())); PADDLE_ENFORCE_NOT_NULL( b, platform::errors::NotFound("PDNode %s is not found.", b->name())); PADDLE_ENFORCE_NE(a, b, platform::errors::PermissionDenied( "Cannot connect the same node in the graph.")); edges_.emplace_back(a, b); } void GraphPatternDetector::operator()(Graph *graph, GraphPatternDetector::handle_t handler) { if (!MarkPDNodesInGraph(*graph)) { return; } auto subgraphs = DetectPatterns(); UniquePatterns(&subgraphs); SortSubgraphs(&subgraphs); RemoveOverlappedMatch(&subgraphs); ValidateByNodeRole(&subgraphs); if (subgraphs.empty()) return; LOG(INFO) << "--- detected " << subgraphs.size() << " subgraphs"; int id = 0; for (auto &g : subgraphs) { VLOG(3) << "optimizing #" << id++ << " subgraph"; handler(g, graph); } } bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) { VLOG(3) << "mark pdnodes in graph"; if (graph.Nodes().empty()) return false; for (auto &node : GraphTraits::DFS(graph)) { for (const auto &pdnode : pattern_.nodes()) { if (pdnode->Tell(&node)) { VLOG(4) << "Node " << node.Name() << " marked as " << pdnode->name(); pdnodes2nodes_[pdnode.get()].insert(&node); } } } // Check to early stop if some PDNode can't find matched Node. for (auto &pdnode : pattern_.nodes()) { if (!pdnodes2nodes_.count(pdnode.get())) { VLOG(4) << pdnode->name() << " can't find matched Node, early stop"; // return false; } } VLOG(3) << pdnodes2nodes_.size() << " nodes marked"; return !pdnodes2nodes_.empty(); } // The intermediate Nodes can only link to the nodes inside the pattern, or this // subgraph will be dropped. void GraphPatternDetector::ValidateByNodeRole( std::vector *subgraphs) { std::vector result; subgraphs->erase( std::remove_if( subgraphs->begin(), subgraphs->end(), [](const GraphPatternDetector::subgraph_t &subgraph) -> bool { // Collect the inputs and outputs. std::set ios; for (auto &item : subgraph) { if (!item.first->IsIntermediate()) { ios.insert(item.second); } } for (auto &item : subgraph) { if (item.first->IsIntermediate()) { for (auto *x : item.second->inputs) { if (!ios.count(x)) { return true; } } for (auto *x : item.second->outputs) { if (!ios.count(x)) { return true; } } } } return false; }), subgraphs->end()); } struct HitGroup { std::map roles; bool Match(Node *node, PDNode *pat) { if (nodes_.count(node)) { if (roles.count(pat) && roles[pat] == node) return true; return false; } else { if (roles.count(pat) && roles[pat] != node) return false; return true; } } void Register(Node *node, PDNode *pat) { roles[pat] = node; nodes_.insert(node); } private: std::set nodes_; }; // Tell whether Node a links to b. bool IsNodesLink(Node *a, Node *b) { for (auto *node : a->outputs) { if (b == node) { return true; } } return false; } std::vector GraphPatternDetector::DetectPatterns() { // Init empty subgraphs. std::vector result; std::vector init_groups; std::array, 2> bi_records; auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get() : pattern_.edges().front().first; if (!pdnodes2nodes_.count(first_pnode)) return result; for (auto *node : pdnodes2nodes_[first_pnode]) { HitGroup group; group.roles[first_pnode] = node; init_groups.emplace_back(group); } int step = 0; bi_records[0] = std::move(init_groups); // Extend a PDNode to subgraphs by deducing the connection relations defined // in edges of PDNodes. for (const auto &edge : pattern_.edges()) { VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name(); // TODO(Superjomn) Fix bug here, the groups might be duplicate here. // Each role has two PDNodes, which indicates two roles. // Detect two Nodes that can match these two roles and they are connected. auto &pre_groups = bi_records[step % 2]; auto &cur_groups = bi_records[1 - (step++ % 2)]; cur_groups.clear(); if (pre_groups.empty()) break; // source -> target for (Node *source : pdnodes2nodes_[edge.first]) { for (Node *target : pdnodes2nodes_[edge.second]) { VLOG(8) << "check " << source->id() << " -- " << target->id(); // TODO(Superjomn) add some prune strategies. for (const auto &group : pre_groups) { if (IsNodesLink(source, target)) { HitGroup new_group = group; bool flag = new_group.Match(source, edge.first) && new_group.Match(target, edge.second); if (flag) { new_group.Register(source, edge.first); new_group.Register(target, edge.second); cur_groups.push_back(new_group); // TODO(Superjomn) need to unique } } } } } VLOG(3) << "step " << step << " get records: " << cur_groups.size(); for (auto &group : cur_groups) { for (auto &item : group.roles) { VLOG(4) << "node " << item.second->id() << " as " << item.first->name(); } VLOG(4) << "========================================================="; } } for (auto &group : bi_records[step % 2]) { GraphPatternDetector::subgraph_t subgraph; for (auto &role : group.roles) { subgraph.emplace(role.first, role.second); } result.emplace_back(subgraph); } return result; } struct GraphItemLessThan { bool operator()(const std::pair &a, const std::pair &b) { if (a.first != b.first) { return a.first < b.first; } else { return a.second < b.second; } } }; // TODO(Superjomn) enhance the function as it marks unique unique as duplicates // see https://github.com/PaddlePaddle/Paddle/issues/13550 void GraphPatternDetector::UniquePatterns( std::vector *subgraphs) { if (subgraphs->empty()) return; std::vector result; std::set set; std::hash hasher; for (auto &g : *subgraphs) { // Sort the items in the sub-graph, and transform to a string key. std::vector> sorted_keys(g.begin(), g.end()); std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan()); std::stringstream ss; for (auto &item : sorted_keys) { ss << item.first << ":" << item.second; } auto key = hasher(ss.str()); if (!set.count(key)) { result.emplace_back(g); set.insert(key); } } *subgraphs = result; } void GraphPatternDetector::SortSubgraphs( std::vector *subgraphs) { if (subgraphs->empty()) return; bool has_bn_add_act = false; for (auto &subgraph : *subgraphs) { for (auto &item : subgraph) { if (item.first->name().find("bn_add_act") != std::string::npos) { has_bn_add_act = true; break; } } } if (!has_bn_add_act) { return; } std::sort( subgraphs->begin(), subgraphs->end(), [](const GraphPatternDetector::subgraph_t &a, const GraphPatternDetector::subgraph_t &b) { for (auto &item : a) { if (item.first->name().find("bn_add_act") != std::string::npos && item.first->name().find("bn_reserve_space") != std::string::npos) { auto it_b = b.find(item.first); if (it_b != b.end()) { if (item.second->Name() != it_b->second->Name()) { return item.second->Name() < it_b->second->Name(); } else { return false; } } else { return false; } } } return false; }); } void GraphPatternDetector::RemoveOverlappedMatch( std::vector *subgraphs) { std::vector result; std::set node_set; for (const auto &subgraph : *subgraphs) { bool valid = true; for (auto &item : subgraph) { if (item.first->IsIntermediate() && node_set.count(item.second)) { valid = false; break; } } if (valid) { for (auto &item : subgraph) { node_set.insert(item.second); } result.push_back(subgraph); } } *subgraphs = result; } std::string PDPattern::DotString() const { using inference::analysis::Dot; Dot dot; int id = 0; // Create Nodes std::unordered_map node2dot; for (const auto &node : nodes()) { std::string node_id = "Node" + std::to_string(id++); dot.AddNode(node_id, {}, node->name()); node2dot[node.get()] = node_id; } // Create Edges for (const auto &edge : edges()) { if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) { LOG(ERROR) << "no node " << edge.first << " " << edge.second; continue; } auto &src = node2dot.at(edge.first); auto &trg = node2dot.at(edge.second); dot.AddEdge(src, trg, {}); } return dot.Build(); } PDNode &PDNode::LinksTo(const std::vector &others) { // extend outlinks. for (PDNode *x : others) { pattern_->AddEdge(this, x); } return *this; } PDNode &PDNode::LinksFrom(const std::vector &others) { // extend outlinks. for (PDNode *x : others) { pattern_->AddEdge(x, this); } return *this; } PDNode *PDNode::assert_is_op() { asserts_.emplace_back([](Node *x) { return x && x->IsOp(); }); return this; } PDNode *PDNode::assert_is_op(const std::string &op_type) { asserts_.emplace_back([op_type](Node *x) { return x && x->IsOp() && x->Op()->Type() == op_type; }); return this; } PDNode *PDNode::assert_is_var() { asserts_.emplace_back([](Node *x) { return x && x->IsVar(); }); return this; } PDNode *PDNode::assert_var_dtype(proto::VarType::Type dtype) { assert_is_var(); asserts_.emplace_back( [dtype](Node *x) { return x->Var()->GetDataType() == dtype; }); return this; } PDNode *PDNode::assert_is_not_ctrl_var() { asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); }); return this; } PDNode *PDNode::assert_var_not_persistable() { assert_is_var(); asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); }); return this; } PDNode *PDNode::assert_is_persistable_var() { assert_is_var(); asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); }); return this; } PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type, const std::string &argument, int nth) { assert_is_var(); assert_is_op_input(op_type); asserts_.emplace_back([=](Node *x) { for (auto *op : x->outputs) { if (op->IsOp() && op->Op()->Type() == op_type && IsNthInput(x, op, argument, nth)) return true; } return false; }); return this; } PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type, const std::string &argument, int nth) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->inputs) { if (op->IsOp() && op->Op()->Type() == op_type && IsNthOutput(x, op, argument, nth)) return true; } return false; }); return this; } PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->outputs) { if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type && op->inputs.size() == 1) { return true; } } return false; }); return this; } PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->inputs) { if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type && op->outputs.size() == 1) { return true; } } return false; }); return this; } PDNode *PDNode::assert_is_op_output(const std::string &op_type) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->inputs) { if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) { return true; } } return false; }); return this; } PDNode *PDNode::assert_is_op_output(const std::string &op_type, const std::string &argument) { assert_is_var(); assert_is_op_nth_output(op_type, argument, 0); return this; } PDNode *PDNode::assert_is_op_input(const std::string &op_type) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->outputs) { if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) { return true; } } return false; }); return this; } PDNode *PDNode::assert_is_not_op_input(const std::string &argument) { assert_is_op(); asserts_.emplace_back([=](Node *x) { auto &ins = x->Op()->Inputs(); auto iter = ins.find(argument); return iter == ins.end() || iter->second.empty(); }); return this; } PDNode *PDNode::assert_is_op_input(const std::string &op_type, const std::string &argument) { assert_is_var(); assert_is_op_nth_input(op_type, argument, 0); return this; } PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) { assert_is_op(op_type); asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; }); return this; } PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) { assert_is_op(op_type); asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; }); return this; } PDNode *PDNode::assert_has_n_inputs(size_t n) { asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; }); return this; } PDNode *PDNode::assert_has_n_outputs(size_t n) { asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; }); return this; } PDNode *PDNode::assert_more(PDNode::teller_t &&teller) { asserts_.emplace_back(std::move(teller)); return this; } PDNode *PDNode::assert_is_ops(const std::unordered_set &op_types) { asserts_.emplace_back([op_types](Node *x) { return x && x->IsOp() && op_types.count(x->Op()->Type()); }); return this; } PDNode *PDNode::assert_is_ops_nth_input( const std::unordered_set &op_types, const std::string &argument, int nth) { assert_is_var(); assert_is_ops_input(op_types); asserts_.emplace_back([=](Node *x) { for (auto *op : x->outputs) { if (op->IsOp() && op_types.count(op->Op()->Type()) && IsNthInput(x, op, argument, nth)) return true; } return false; }); return this; } PDNode *PDNode::assert_is_ops_nth_output( const std::unordered_set &op_types, const std::string &argument, int nth) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->inputs) { if (op->IsOp() && op_types.count(op->Op()->Type()) && IsNthOutput(x, op, argument, nth)) return true; } return false; }); return this; } PDNode *PDNode::assert_is_ops_output( const std::unordered_set &op_types) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->inputs) { if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) { return true; } } return false; }); return this; } PDNode *PDNode::assert_is_ops_output( const std::unordered_set &op_types, const std::string &argument) { assert_is_var(); assert_is_ops_nth_output(op_types, argument, 0); return this; } PDNode *PDNode::assert_is_ops_input( const std::unordered_set &op_types) { assert_is_var(); asserts_.emplace_back([=](Node *x) { for (auto *op : x->outputs) { if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) { return true; } } return false; }); return this; } PDNode *PDNode::assert_is_ops_input( const std::unordered_set &op_types, const std::string &argument) { assert_is_var(); assert_is_ops_nth_input(op_types, argument, 0); return this; } bool VarLinksToOp(Node *node, const std::string &op_type) { for (auto *out : node->outputs) { if (out->IsOp() && out->Op()->Type() == op_type) { return true; } } return false; } bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) { PADDLE_ENFORCE_EQ( var->IsVar(), true, platform::errors::InvalidArgument( "First parameter of function IsNthInput must be Node::Var")); PADDLE_ENFORCE_EQ( op->IsOp(), true, platform::errors::InvalidArgument( "Second parameter of function IsNthInput must be Node::Op")); if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth) return false; return var->Name() == op->Op()->Input(argument)[nth]; } bool HasInput(Node *op, const std::string &argument) { PADDLE_ENFORCE_EQ( op->IsOp(), true, platform::errors::InvalidArgument( "First parameter of function HasInput must be Node::Op")); auto const &names = op->Op()->InputNames(); if (std::find(names.begin(), names.end(), argument) == names.end()) return false; return true; } bool HasOutput(Node *op, const std::string &argument) { PADDLE_ENFORCE_EQ( op->IsOp(), true, platform::errors::InvalidArgument( "First parameter of function HasOuput must be Node::Op")); auto const &names = op->Op()->OutputNames(); if (std::find(names.begin(), names.end(), argument) == names.end()) return false; return true; } bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) { PADDLE_ENFORCE_EQ( var->IsVar(), true, platform::errors::InvalidArgument( "First parameter of function IsNthOutput must be Node::Var")); PADDLE_ENFORCE_EQ( op->IsOp(), true, platform::errors::InvalidArgument( "Second parameter of function IsNthOutput must be Node::Op")); if (!HasOutput(op, argument) || op->Op()->Output(argument).size() <= nth) return false; return var->Name() == op->Op()->Output(argument)[nth]; } void GraphSafeRemoveNodes(Graph *graph, const std::unordered_set &nodes) { for (auto *node : nodes) { graph->RemoveNode(const_cast(node)); } for (auto *node : graph->Nodes()) { for (auto it = node->inputs.begin(); it != node->inputs.end();) { if (nodes.count(*it)) { it = const_cast(node)->inputs.erase(it); } else { it++; } } for (auto it = node->outputs.begin(); it != node->outputs.end();) { if (nodes.count(*it)) { it = const_cast(node)->outputs.erase(it); } else { it++; } } } } bool VarLinksFromOp(Node *node, const std::string &op_type) { for (auto *out : node->inputs) { if (out->IsOp() && out->Op()->Type() == op_type) { return true; } } return false; } PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input, const std::string &conv_type, bool with_eltwise_add) { // Create Operators conv_input->assert_is_op_input(conv_type, "Input"); auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type); PDNode *eltwise_op = nullptr; if (with_eltwise_add) { eltwise_op = pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add"); } auto *batch_norm_op = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm"); // Create variables // Conv Filter auto *conv_weight_var = pattern->NewNode(conv_weight_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input(conv_type, "Filter"); auto *conv_out_var = pattern->NewNode(conv_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op(conv_type); PDNode *eltwise_y_in_var = nullptr; PDNode *eltwise_out_var = nullptr; if (with_eltwise_add) { // Conv output as Bias input conv_out_var->assert_is_op_input("elementwise_add", "X"); // Bias eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr()) ->assert_is_op_input("elementwise_add", "Y") ->AsInput(); eltwise_out_var = pattern->NewNode(eltwise_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op("elementwise_add"); } else { // Conv output as BN input conv_out_var->assert_is_op_input("batch_norm", "X"); } // BN Scale auto *bn_scale_var = pattern->NewNode(bn_scale_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("batch_norm", "Scale"); // BN Bias auto *bn_bias_var = pattern->NewNode(bn_bias_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("batch_norm", "Bias"); // BN Mean auto *bn_mean_var = pattern->NewNode(bn_mean_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("batch_norm", "Mean"); // BN Variance auto *bn_variance_var = pattern->NewNode(bn_variance_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("batch_norm", "Variance"); // BN output auto *bn_out_var = pattern->NewNode(bn_out_repr()) ->AsOutput() ->assert_is_op_output("batch_norm"); auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr()) ->AsOutput() ->assert_is_op_output("batch_norm", "MeanOut"); auto *bn_variance_out_var = pattern->NewNode(bn_variance_out_repr()) ->AsOutput() ->assert_is_op_output("batch_norm", "VarianceOut"); auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr()) ->AsOutput() ->assert_is_op_output("batch_norm", "SavedMean"); auto *bn_saved_variance_var = pattern->NewNode(bn_saved_variance_repr()) ->AsOutput() ->assert_is_op_output("batch_norm", "SavedVariance"); conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var}); if (with_eltwise_add) { eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var}) .LinksTo({eltwise_out_var}); batch_norm_op ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var, bn_variance_var}) .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var, bn_saved_mean_var, bn_saved_variance_var}); } else { batch_norm_op ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var, bn_variance_var}) .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var, bn_saved_mean_var, bn_saved_variance_var}); } return bn_out_var; } PDNode *patterns::ConvActivation::operator()( paddle::framework::ir::PDNode *conv_input, std::string conv_type, std::string activation_type) { // Create Operators conv_input->assert_is_op_input(conv_type, "Input"); auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type); auto *activation_op = pattern->NewNode(activation_repr())->assert_is_op(activation_type); // Create variables // Filter auto *conv_weight_var = pattern->NewNode(conv_weight_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input(conv_type, "Filter"); // intermediate variable, will be removed in the IR after fuse. auto *conv_out_var = pattern->NewNode(conv_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op(conv_type) ->assert_is_op_input(activation_type); // output auto *activation_out_var = pattern->NewNode(activation_out_repr()) ->AsOutput() ->assert_is_op_output(activation_type); conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var}); activation_op->LinksFrom({conv_out_var}).LinksTo({activation_out_var}); return activation_out_var; } PDNode *patterns::SeqConvEltAddRelu::operator()( paddle::framework::ir::PDNode *seqconv_input) { // Create Operators seqconv_input->assert_is_op_input("sequence_conv", "X"); auto *seqconv_op = pattern->NewNode(seqconv_repr()) ->assert_is_op("sequence_conv") ->assert_op_attr("paddingTrainable", false) ->assert_op_attr("contextStride", 1); auto *eltadd_op = pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add"); auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu"); // Create variables // Filter auto *seqconv_weight_var = pattern->NewNode(seqconv_weight_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("sequence_conv", "Filter"); // Bias auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr()) ->AsInput() ->assert_is_op_input("elementwise_add"); // intermediate variable, will be removed in the IR after fuse. auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op("sequence_conv") ->assert_is_op_input("elementwise_add"); auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op("elementwise_add") ->assert_is_only_input_of_op("relu"); // output auto *relu_out_var = pattern->NewNode(relu_out_repr()) ->AsOutput() ->assert_is_op_output("relu"); seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var}) .LinksTo({seqconv_out_var}); eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var}) .LinksTo({eltadd_out_var}); relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var}); return relu_out_var; } PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x, bool with_bias, bool with_relu) { // Create shared nodes. x->assert_is_op_input("mul", "X"); auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul"); auto *mul_w_var = pattern->NewNode(w_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("mul", "Y"); auto *mul_out_var = pattern->NewNode(mul_out_repr())->assert_is_op_output("mul"); // Add links. mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var}); if (!with_bias) { // not with bias return mul_out_var; } else { // with bias mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); // Create operators. auto *elementwise_add = pattern->NewNode(elementwise_add_repr()) ->assert_is_op("elementwise_add"); // Create variables. auto *bias = pattern->NewNode(bias_repr()) ->assert_is_op_input("elementwise_add") ->assert_is_persistable_var() ->AsInput(); auto *elementwise_add_out_var = pattern->NewNode(elementwise_add_out_repr()) ->AsOutput() ->assert_is_op_output("elementwise_add"); elementwise_add->LinksFrom({mul_out_var, bias}) .LinksTo({elementwise_add_out_var}); if (!with_relu) { return elementwise_add_out_var; } else { elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu"); // Create operators. auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu"); auto *relu_out_var = pattern->NewNode(relu_out_repr()) ->AsOutput() ->assert_is_op_output("relu"); relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var}); return relu_out_var; } } } PDNode *patterns::FCMKLDNN::operator()(paddle::framework::ir::PDNode *x, bool with_bias) { // Create shared nodes. x->assert_is_op_input("fc", "Input"); auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc"); // Create variables // Input auto *input_var = pattern->NewNode(input_repr()) ->AsInput() ->assert_is_op_input("fc", "Input"); // Filter auto *fc_weight_var = pattern->NewNode(weights_repr()) ->AsInput() ->assert_is_op_input("fc", "W"); // Bias auto *fc_bias_var = pattern->NewNode(bias_repr()) ->AsInput() ->assert_is_op_input("fc", "Bias"); // Output auto *fc_out_var = pattern->NewNode(output_repr()) ->AsOutput() ->assert_is_op_output("fc", "Out") ->assert_is_only_output_of_op("fc"); fc_op->LinksFrom({input_var, fc_weight_var, fc_bias_var}) .LinksTo({fc_out_var}); return fc_out_var; } PDNode *patterns::Embedding::operator()(PDNode *x) { x->assert_is_op_input("lookup_table", "Ids"); auto *lookup_table_op = pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table"); #define NEW_NODE(arg__, io__) \ auto *arg__ = pattern->NewNode(arg__##_repr()) \ ->assert_is_op_##io__("lookup_table", #arg__); NEW_NODE(W, input); NEW_NODE(Out, output); #undef NEW_NODE lookup_table_op->LinksFrom({x, W}); lookup_table_op->LinksTo({Out}); return Out; } PDNode *patterns::LSTM::operator()(PDNode *x) { x->assert_is_op_input("lstm", "Input"); auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm"); #define NEW_NODE(arg__, io__) \ auto *arg__ = \ pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__); // Currently, the H0 and C0 are optional // TODO(Superjomn) upgrade the fuse framework to support optional. // NEW_NODE(H0, input); // NEW_NODE(C0, input); NEW_NODE(Weight, input); NEW_NODE(Bias, input); NEW_NODE(Hidden, output); NEW_NODE(Cell, output); NEW_NODE(BatchGate, output); NEW_NODE(BatchCellPreAct, output); #undef NEW_NODE lstm_op->LinksFrom({x, Weight, Bias}); lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct}); return Hidden; } PDNode *patterns::GRU::operator()(PDNode *x) { x->assert_is_op_input("gru", "Input"); auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru"); #define NEW_NODE(arg__, io__) \ auto *arg__ = \ pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__); NEW_NODE(Weight, input); // TODO(Superjomn): upgrade the fuse framework to support optional. // H0 and bias are optional NEW_NODE(Bias, input); // also optional // NEW_NODE(H0, input); NEW_NODE(Hidden, output); // below are intermediate NEW_NODE(BatchGate, output); NEW_NODE(BatchResetHiddenPrev, output); NEW_NODE(BatchHidden, output); #undef NEW_NODE BatchGate->AsIntermediate(); BatchResetHiddenPrev->AsIntermediate(); BatchHidden->AsIntermediate(); gru_op->LinksFrom({x, Weight, Bias}); gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden}); return Hidden; } PDNode *patterns::ActElewiseAdd::operator()( paddle::framework::ir::PDNode *in_var, std::unordered_set act_types) { in_var->assert_is_ops_input(act_types, "X"); auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types); auto *act_out_var = pattern->NewNode(act_out_repr()) ->assert_is_not_ctrl_var() ->assert_is_ops_output(act_types); act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); auto *ele_x_var = pattern->NewNode(ele_x_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_input("elementwise_add") ->AsInput(); auto *elementwise_add = pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add"); auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr()) ->AsOutput() ->assert_is_op_output("elementwise_add", "Out"); act->LinksFrom({in_var}).LinksTo({act_out_var}); elementwise_add->LinksFrom({act_out_var, ele_x_var}) .LinksTo({elewise_add_out}); return elewise_add_out; } PDNode *patterns::BatchNormAct::operator()( paddle::framework::ir::PDNode *bn_x_var, std::unordered_set act_types) { auto *bn_scale_var = pattern->NewNode(bn_scale_repr()) ->assert_is_op_input("batch_norm", "Scale"); auto *bn_bias_var = pattern->NewNode(bn_bias_repr()) ->assert_is_op_input("batch_norm", "Bias"); auto *bn_variance_var = pattern->NewNode(bn_variance_repr()) ->assert_is_op_input("batch_norm", "Variance"); auto *bn_mean_var = pattern->NewNode(bn_mean_repr()) ->assert_is_op_input("batch_norm", "Mean"); auto *bn = pattern->NewNode(batch_norm_repr()) ->assert_is_op("batch_norm") ->assert_is_not_op_input("MomentumTensor") ->assert_op_attr("is_test", false) ->assert_op_attr("use_global_stats", false) ->assert_op_attr("data_layout", "NHWC"); auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr()) ->assert_is_op_output("batch_norm", "MeanOut"); auto *bn_variance_out_var = pattern->NewNode(bn_variance_out_repr()) ->assert_is_op_output("batch_norm", "VarianceOut"); auto *bn_saved_variance_var = pattern->NewNode(bn_saved_variance_repr()) ->assert_is_op_output("batch_norm", "SavedVariance"); auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr()) ->assert_is_op_output("batch_norm", "SavedMean"); auto *bn_reserve_space = pattern->NewNode(bn_reserve_space_repr()) ->assert_is_op_output("batch_norm", "ReserveSpace"); auto *bn_out_var = pattern->NewNode(bn_out_repr()) ->assert_is_op_output("batch_norm", "Y") ->assert_has_n_outputs(1); bn_out_var->AsIntermediate()->assert_is_ops_input(act_types); auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types); auto *act_out_var = pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out"); bn->LinksFrom( {bn_x_var, bn_scale_var, bn_bias_var, bn_variance_var, bn_mean_var}) .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var, bn_saved_mean_var, bn_reserve_space, bn_out_var}); act->LinksFrom({bn_out_var}).LinksTo({act_out_var}); return act_out_var; } PDNode *patterns::BatchNormActGrad::operator()( paddle::framework::ir::PDNode *d_act_out_var, std::unordered_set act_grad_types) { auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types); auto *bn_grad = pattern->NewNode(batch_norm_grad_repr()) ->assert_is_op("batch_norm_grad") ->assert_op_attr("use_global_stats", false) ->assert_op_attr("data_layout", "NHWC"); auto *act_out_var = pattern->NewNode(act_out_repr()) ->assert_is_ops_input(act_grad_types, "Out"); auto *d_intermediate_var = pattern->NewNode(d_itermediate_out_repr()) ->assert_is_ops_output(act_grad_types, GradVarName("X")) ->assert_has_n_outputs(1); auto *bn_x_var = pattern->NewNode(bn_x_repr()) ->assert_is_op_input("batch_norm_grad", "X") ->assert_var_dtype(proto::VarType::FP16); auto *bn_scale_var = pattern->NewNode(bn_scale_repr()) ->assert_is_op_input("batch_norm_grad", "Scale"); auto *bn_bias_var = pattern->NewNode(bn_bias_repr()) ->assert_is_op_input("batch_norm_grad", "Bias"); auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr()) ->assert_is_op_input("batch_norm_grad", "SavedMean"); auto *bn_saved_variance_var = pattern->NewNode(bn_saved_variance_repr()) ->assert_is_op_input("batch_norm_grad", "SavedVariance"); // ReserveSpace as the output is equal to: // data_layout == 'NHWC' && FLAGS_cudnn_batchnorm_spatial_persistent == true auto *bn_reserve_space = pattern->NewNode(bn_reserve_space_repr()) ->assert_is_op_input("batch_norm_grad", "ReserveSpace"); auto *d_bn_x_var = pattern->NewNode(d_bn_x_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("batch_norm_grad", GradVarName("X")); auto *d_bn_scale_var = pattern->NewNode(d_bn_scale_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("batch_norm_grad", GradVarName("Scale")); auto *d_bn_bias_var = pattern->NewNode(d_bn_bias_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("batch_norm_grad", GradVarName("Bias")); act_grad->LinksFrom({d_act_out_var, act_out_var}) .LinksTo({d_intermediate_var}); bn_grad ->LinksFrom({bn_x_var, d_intermediate_var, bn_scale_var, bn_bias_var, bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space}) .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var}); return bn_grad; } PDNode *patterns::BatchNormActOneDNN::operator()(const std::string &act_type) { auto *bn_x = pattern->NewNode(bn_in_repr()) ->AsInput() ->assert_is_op_input("batch_norm", "X"); auto *bn = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm"); auto *bn_out = pattern->NewNode(bn_out_repr()) ->assert_is_op_output("batch_norm", "Y") ->assert_is_op_input(act_type); auto *act = pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate(); auto *act_out = pattern->NewNode(act_out_repr()) ->assert_is_op_output(act_type, "Out") ->AsOutput(); bn->LinksFrom({bn_x}).LinksTo({bn_out}); act->LinksFrom({bn_out}).LinksTo({act_out}); return act_out; } PDNode *patterns::BatchNormAddAct::operator()( paddle::framework::ir::PDNode *bn_x_var, std::unordered_set act_types) { bn_x_var->assert_is_op_input("batch_norm", "X") ->assert_var_dtype(proto::VarType::FP16); auto *bn_scale_var = pattern->NewNode(bn_scale_repr()) ->assert_is_op_input("batch_norm", "Scale"); auto *bn_bias_var = pattern->NewNode(bn_bias_repr()) ->assert_is_op_input("batch_norm", "Bias"); auto *bn = pattern->NewNode(batch_norm_repr()) ->assert_is_op("batch_norm") ->assert_is_not_op_input("MomentumTensor") ->assert_op_attr("is_test", false) ->assert_op_attr("use_global_stats", false) ->assert_op_attr("data_layout", "NHWC"); auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr()) ->assert_is_op_output("batch_norm", "MeanOut"); auto *bn_variance_out_var = pattern->NewNode(bn_variance_out_repr()) ->assert_is_op_output("batch_norm", "VarianceOut"); auto *bn_saved_variance_var = pattern->NewNode(bn_saved_variance_repr()) ->assert_is_op_output("batch_norm", "SavedVariance"); auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr()) ->assert_is_op_output("batch_norm", "SavedMean"); auto *bn_reserve_space = pattern->NewNode(bn_reserve_space_repr()) ->assert_is_op_output("batch_norm", "ReserveSpace"); auto *bn_out_var = pattern->NewNode(bn_out_repr()) ->assert_is_op_output("batch_norm", "Y") ->assert_var_dtype(proto::VarType::FP16); bn_out_var->assert_is_op_input("elementwise_add"); auto *elewise_add = pattern->NewNode(elewise_add_repr())->assert_is_op("elementwise_add"); auto *elewise_add_in_var = pattern->NewNode(elewise_add_in_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_input("elementwise_add") ->assert_var_dtype(proto::VarType::FP16); auto *elewise_add_out_var = pattern->NewNode(elewise_add_out_repr()) ->assert_is_op_output("elementwise_add", "Out") ->assert_has_n_outputs(1); elewise_add_out_var->AsIntermediate()->assert_is_ops_input(act_types); auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types); auto *act_out_var = pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out"); bn->LinksFrom({bn_x_var, bn_scale_var, bn_bias_var}) .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var, bn_saved_mean_var, bn_reserve_space, bn_out_var}); elewise_add->LinksFrom({elewise_add_in_var, bn_out_var}) .LinksTo({elewise_add_out_var}); act->LinksFrom({elewise_add_out_var}).LinksTo({act_out_var}); return act_out_var; } PDNode *patterns::BatchNormAddActGrad::operator()( paddle::framework::ir::PDNode *d_act_out_var, std::unordered_set act_grad_types) { auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types); auto *elewise_add_grad = pattern->NewNode(elewise_add_grad_repr()) ->assert_is_op("elementwise_add_grad"); auto *bn_grad = pattern->NewNode(batch_norm_grad_repr()) ->assert_is_op("batch_norm_grad") ->assert_op_attr("use_global_stats", false) ->assert_op_attr("data_layout", "NHWC"); auto *act_out_var = pattern->NewNode(act_out_repr()) ->assert_is_ops_input(act_grad_types, "Out"); auto *d_act_x_var = pattern->NewNode(d_act_x_repr()) ->assert_is_ops_output(act_grad_types, GradVarName("X")) ->assert_has_n_outputs(1); // d_act_x d_act_x_var->AsIntermediate()->assert_is_op_input("elementwise_add_grad"); auto *d_elewise_add_in_var = pattern->NewNode(d_elewise_add_in_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("elementwise_add_grad") ->assert_var_dtype(proto::VarType::FP16); // d_add_in_1 auto *d_bn_out_var = pattern->NewNode(d_bn_out_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("elementwise_add_grad") ->assert_var_dtype(proto::VarType::FP16); // d_add_in_2 d_bn_out_var->assert_is_op_input("batch_norm_grad", GradVarName("Y")); auto *bn_x_var = pattern->NewNode(bn_x_repr()) ->assert_is_op_input("batch_norm_grad", "X") ->assert_var_dtype(proto::VarType::FP16); auto *bn_scale_var = pattern->NewNode(bn_scale_repr()) ->assert_is_op_input("batch_norm_grad", "Scale"); auto *bn_bias_var = pattern->NewNode(bn_bias_repr()) ->assert_is_op_input("batch_norm_grad", "Bias"); auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr()) ->assert_is_op_input("batch_norm_grad", "SavedMean"); auto *bn_saved_variance_var = pattern->NewNode(bn_saved_variance_repr()) ->assert_is_op_input("batch_norm_grad", "SavedVariance"); auto *bn_reserve_space = pattern->NewNode(bn_reserve_space_repr()) ->assert_is_op_input("batch_norm_grad", "ReserveSpace"); auto *d_bn_x_var = pattern->NewNode(d_bn_x_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("batch_norm_grad", GradVarName("X")) ->assert_var_dtype(proto::VarType::FP16); auto *d_bn_scale_var = pattern->NewNode(d_bn_scale_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("batch_norm_grad", GradVarName("Scale")); auto *d_bn_bias_var = pattern->NewNode(d_bn_bias_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("batch_norm_grad", GradVarName("Bias")); act_grad->LinksFrom({d_act_out_var, act_out_var}).LinksTo({d_act_x_var}); elewise_add_grad->LinksFrom({d_act_x_var}) .LinksTo({d_elewise_add_in_var, d_bn_out_var}); bn_grad ->LinksFrom({bn_x_var, d_bn_out_var, bn_scale_var, bn_bias_var, bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space}) .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var}); return bn_grad; } PDNode *patterns::ElewiseAddAct::operator()( paddle::framework::ir::PDNode *ele_x_var, std::unordered_set act_types) { auto *ele_y_var = pattern->NewNode(ele_y_repr()) ->assert_is_op_input("elementwise_add", "Y"); auto *ele_add = pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add"); auto *ele_out_var = pattern->NewNode(elewise_add_out_repr()) ->assert_is_op_output("elementwise_add", "Out"); ele_out_var->AsIntermediate()->assert_is_ops_input(act_types); auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types); auto *act_out_var = pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out"); ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var}); act->LinksFrom({ele_out_var}).LinksTo({act_out_var}); return act_out_var; } PDNode *patterns::ElewiseAddActInplaceGrad::operator()( paddle::framework::ir::PDNode *d_act_out_var, std::unordered_set act_types) { // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"] // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"] auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types); auto *act_out_var = pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out"); auto *d_intermediate_var = pattern->NewNode(d_itermediate_out_repr()) ->assert_is_ops_output(act_types, GradVarName("X")); act_grad->LinksFrom({d_act_out_var, act_out_var}) .LinksTo({d_intermediate_var}); auto *ele_y_var = pattern->NewNode(ele_y_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_input("elementwise_add_grad", "Y"); auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr()) ->assert_is_op("elementwise_add_grad"); auto *d_ele_x_var = pattern->NewNode(d_ele_x_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("elementwise_add_grad", GradVarName("X")); auto *d_ele_y_var = pattern->NewNode(d_ele_y_repr()) ->assert_is_not_ctrl_var() ->assert_is_op_output("elementwise_add_grad", GradVarName("Y")); ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var}) .LinksTo({d_ele_x_var, d_ele_y_var}); return ele_add_grad; } // conv_type: conv2d, conv3d, conv2d_transpose PDNode *patterns::ConvBias::operator()( paddle::framework::ir::PDNode *conv_input, std::string conv_type) { // Create Operators conv_input->assert_is_op_input(conv_type, "Input"); auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type); auto *eltiwse_op = pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add"); // Create variables // Filter auto *conv_weight_var = pattern->NewNode(conv_weight_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input(conv_type, "Filter"); // intermediate variable, will be removed in the IR after fuse. auto *conv_out_var = pattern->NewNode(conv_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op(conv_type) ->assert_is_op_input("elementwise_add"); // Bias stored in elementwise_add auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("elementwise_add", "Y"); // output auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr()) ->AsOutput() ->assert_is_op_output("elementwise_add"); conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var}); eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var}) .LinksTo({eltwise_out_var}); return eltwise_out_var; } PDNode *patterns::Conv::operator()() { auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d"); auto input_var = pattern->NewNode(conv_input_repr()) ->AsInput() ->assert_is_op_input("conv2d", "Input"); auto filter_var = pattern->NewNode(conv_filter_repr()) ->AsInput() ->assert_is_op_input("conv2d", "Filter"); auto output_var = pattern->NewNode(conv_output_repr()) ->AsOutput() ->assert_is_op_output("conv2d", "Output"); conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var}); return output_var; } PDNode *patterns::Transpose::operator()() { auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op(); auto transpose_op = pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2"); auto transpose_in = pattern->NewNode(transpose_in_repr()) ->AsInput() ->assert_is_op_input("transpose2"); auto transpose_out = pattern->NewNode(transpose_out_repr()) ->AsOutput() ->assert_is_op_output("transpose2", "Out"); auto next_op = pattern->NewNode(next_op_repr())->assert_is_op(); prev_op->LinksTo({transpose_in}); transpose_op->LinksFrom({transpose_in}).LinksTo({transpose_out}); next_op->LinksFrom({transpose_out}); return transpose_out; } PDNode *patterns::Reshape::operator()() { auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op(); auto reshape_op = pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2"); auto reshape_in = pattern->NewNode(reshape_in_repr()) ->AsInput() ->assert_is_op_input("reshape2", "X"); auto reshape_out = pattern->NewNode(reshape_out_repr()) ->AsOutput() ->assert_is_op_output("reshape2", "Out"); auto next_op = pattern->NewNode(next_op_repr())->assert_is_op(); prev_op->LinksTo({reshape_in}); reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out}); next_op->LinksFrom({reshape_out}); return reshape_out; } PDNode *patterns::Matmul::operator()() { auto prev_op_x = pattern->NewNode(prev_op_x_repr())->assert_is_op(); auto prev_op_y = pattern->NewNode(prev_op_y_repr())->assert_is_op(); auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul"); auto matmul_in_x = pattern->NewNode(matmul_in_x_repr()) ->AsInput() ->assert_is_op_input("matmul", "X"); auto matmul_in_y = pattern->NewNode(matmul_in_y_repr()) ->AsInput() ->assert_is_op_input("matmul", "Y"); auto matmul_out = pattern->NewNode(matmul_out_repr()) ->AsOutput() ->assert_is_op_output("matmul", "Out"); prev_op_x->LinksTo({matmul_in_x}); prev_op_y->LinksTo({matmul_in_y}); matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out}); return matmul_out; } PDNode *patterns::ConvResidual::operator()(bool with_residual_data) { auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d"); if (!with_residual_data) { conv_op->assert_more([&](Node *x) { auto node_names = x->Op()->InputNames(); if (!HasInput(x, "ResidualData") || x->Op()->Input("ResidualData").size() == 0) return true; return false; }); } auto input_var = pattern->NewNode(conv_input_repr()) ->AsInput() ->assert_is_op_input("conv2d", "Input"); auto filter_var = pattern->NewNode(conv_filter_repr()) ->AsInput() ->assert_is_op_input("conv2d", "Filter"); auto output_var = pattern->NewNode(conv_output_repr()) ->AsOutput() ->assert_is_op_output("conv2d", "Output"); std::vector links_from{input_var, filter_var}; if (with_residual_data) { auto res_conn_var = pattern->NewNode(conv_residual_data_repr()) ->AsInput() ->assert_is_op_input("conv2d", "ResidualData"); links_from.push_back(res_conn_var); } conv_op->LinksFrom(links_from).LinksTo({output_var}); return output_var; } PDNode *patterns::Pool::operator()() { auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d"); auto input_var = pattern->NewNode(pool_input_repr()) ->AsInput() ->assert_is_op_input("pool2d", "X"); auto output_var = pattern->NewNode(pool_output_repr()) ->AsOutput() ->assert_is_op_output("pool2d", "Out"); pool_op->LinksFrom({input_var}).LinksTo({output_var}); return output_var; } PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) { auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr()) ->assert_is_op("elementwise_add"); x_var->AsInput()->assert_is_op_input("elementwise_add", "X"); y_var->AsInput()->assert_is_op_input("elementwise_add", "Y"); auto out_var = pattern->NewNode(elementwise_add_out_repr()) ->AsOutput() ->assert_is_op_output("elementwise_add", "Out"); elementwise_add_op->LinksFrom({x_var, y_var}); elementwise_add_op->LinksTo({out_var}); return out_var; } PDNode *patterns::Concat::operator()() { auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat"); auto output_var = pattern->NewNode(concat_out_repr()) ->AsOutput() ->assert_is_op_output("concat", "Out"); concat_op->LinksTo({output_var}); return output_var; } PDNode *patterns::ConcatReLU::operator()() { auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat"); auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu"); auto concat_out = pattern->NewNode(concat_out_repr())->assert_is_op_output("concat", "Out"); auto relu_out = pattern->NewNode(relu_out_repr()) ->AsOutput() ->assert_is_op_output("relu", "Out"); concat_op->LinksTo({concat_out}); relu_op->LinksFrom({concat_out}).LinksTo({relu_out}); return relu_out; } PDNode *patterns::ConvConcatReLU::operator()() { auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d"); auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat"); auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu"); auto conv_out = pattern->NewNode(conv_out_repr()) ->assert_is_op_output("conv2d", "Output"); auto concat_out = pattern->NewNode(concat_out_repr()) ->assert_is_op_output("concat", "Out") ->assert_is_op_input("relu", "X"); auto relu_out = pattern->NewNode(relu_out_repr()) ->AsOutput() ->assert_is_op_output("relu", "Out"); conv_op->LinksTo({conv_out}); concat_op->LinksFrom({conv_out}).LinksTo({concat_out}); relu_op->LinksFrom({concat_out}).LinksTo({relu_out}); return relu_out; } PDNode *patterns::OpRequant::operator()() { auto any_op = pattern->NewNode(any_op_repr()) ->assert_is_op() ->assert_more([&](Node *node) { return node->Op()->HasAttr("Scale_out") ? true : false; }); auto requant_in = pattern->NewNode(requant_in_repr()) ->assert_is_op_input("requantize", "Input"); auto requant_op = pattern->NewNode(requant_op_repr())->assert_is_op("requantize"); auto requant_out = pattern->NewNode(requant_out_repr()) ->AsOutput() ->assert_is_op_output("requantize", "Output"); any_op->LinksTo({requant_in}); requant_op->LinksFrom({requant_in}).LinksTo({requant_out}); return requant_out; } PDNode *patterns::RequantOp::operator()() { auto requant_in = pattern->NewNode(requant_in_repr()) ->assert_is_op_input("requantize", "Input"); auto requant_op = pattern->NewNode(requant_op_repr())->assert_is_op("requantize"); auto requant_out = pattern->NewNode(requant_out_repr()) ->AsOutput() ->assert_is_op_output("requantize", "Output"); auto any_op = pattern->NewNode(any_op_repr()) ->assert_is_op() ->assert_more([&](Node *node) { return (node->Op()->HasAttr("Scale_in") || node->Op()->HasAttr("Scale_x") || node->Op()->HasAttr("Scale_y")); }); requant_op->LinksFrom({requant_in}).LinksTo({requant_out}); any_op->LinksFrom({requant_out}); return any_op; } PDNode *patterns::OpDequant::operator()() { auto any_op = pattern->NewNode(any_op_repr()) ->assert_is_op() ->assert_more([&](Node *node) { return (node->Op()->Type() == "matmul" || node->Op()->Type() == "conv2d" || node->Op()->Type() == "fc"); }); auto dequant_in = pattern->NewNode(dequant_in_repr()) ->assert_is_op_input("dequantize", "Input"); auto dequant_op = pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize"); auto dequant_out = pattern->NewNode(dequant_out_repr()) ->AsOutput() ->assert_is_op_output("dequantize", "Output"); any_op->LinksTo({dequant_in}); dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out}); return dequant_out; } PDNode *patterns::DequantScale::operator()() { // Create Operators auto dequant_op = pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize"); auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale"); auto dequant_out = pattern->NewNode(dequant_out_repr()) ->AsOutput() ->assert_is_op_output("dequantize", "Output"); auto scale_out = pattern->NewNode(scale_out_repr()) ->AsOutput() ->assert_is_op_output("scale", "Out"); dequant_op->LinksTo({dequant_out}); scale_op->LinksFrom({dequant_out}).LinksTo({scale_out}); return scale_out; } PDNode *patterns::ScaleMatmul::operator()() { auto scale_in = pattern->NewNode(scale_in_repr()) ->AsInput() ->assert_is_op_input("scale", "X"); auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale"); auto scale_out = pattern->NewNode(scale_out_repr()) ->AsOutput() ->assert_is_op_output("scale", "Out"); auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul"); scale_op->LinksFrom({scale_in}).LinksTo({scale_out}); matmul_op->LinksFrom({scale_out}); return matmul_op; } PDNode *patterns::PriorBox::operator()() { auto prior_box_op = pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box"); auto input_var = pattern->NewNode(prior_box_input_repr()) ->AsInput() ->assert_is_op_input("prior_box", "Input"); auto image_var = pattern->NewNode(prior_box_image_repr()) ->AsInput() ->assert_is_op_input("prior_box", "Image"); auto boxes_var = pattern->NewNode(prior_box_boxes_repr()) ->AsOutput() ->assert_is_op_output("prior_box", "Boxes"); auto variances_var = pattern->NewNode(prior_box_variances_repr()) ->AsOutput() ->assert_is_op_output("prior_box", "Variances"); prior_box_op->LinksFrom({input_var, image_var}) .LinksTo({boxes_var, variances_var}); return boxes_var; } std::unordered_set conv_act_set({"identity", "relu"}); PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) { conv_in->AsInput(); auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d"); auto conv_out = pattern->NewNode(conv_out_repr()) ->assert_is_op_output("conv2d") ->assert_is_op_input("elementwise_add", "X") ->AsIntermediate(); auto conv_filter = pattern->NewNode(conv_filter_repr()) ->assert_is_op_input("conv2d", "Filter") ->AsInput(); auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr()) ->assert_is_op("elementwise_add"); auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr()) ->assert_is_persistable_var() ->assert_is_op_input("elementwise_add", "Y") ->AsInput(); auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr()) ->assert_is_op_output("elementwise_add") ->AsIntermediate(); auto act_op = pattern->NewNode(act_op_repr()) ->assert_is_op() ->assert_more([&](Node *node) { auto op_type = node->Name(); return conv_act_set.count(op_type); }); auto act_out = pattern->NewNode(act_out_repr()) ->assert_is_var() // is activation op's output. ->assert_more([&](Node *node) { for (auto *in_op : node->inputs) { if (conv_act_set.count(in_op->Name())) { return true; } } return false; }) ->AsOutput(); conv_op->LinksFrom({conv_in, conv_filter}); conv_out->LinksFrom({conv_op}); elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y}) .LinksTo({elementwise_add_out}); act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out}); return act_out; } PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) { auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d"); auto conv_filter = pattern->NewNode(conv_filter_repr()) ->assert_is_op_input("conv2d", "Filter") ->AsInput(); auto conv_out = pattern->NewNode(conv_out_repr()) ->assert_is_op_output("conv2d") ->assert_is_op_input("elementwise_add", "X") ->AsIntermediate(); auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr()) ->assert_is_op("elementwise_add"); auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr()) ->assert_is_persistable_var() ->assert_is_op_input("elementwise_add", "Y") ->AsInput(); auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr()) ->assert_is_op_output("elementwise_add") ->assert_is_op_input("elementwise_add", "Y") ->AsIntermediate(); auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr()) ->assert_is_op("elementwise_add"); auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr()) ->assert_is_op_input("elementwise_add", "X") ->AsInput(); auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr()) ->assert_is_op_output("elementwise_add") ->AsIntermediate(); auto act_op = pattern->NewNode(act_op_repr()) ->assert_is_op() ->assert_more([&](Node *node) { auto op_type = node->Name(); return conv_act_set.count(op_type); }); auto act_out = pattern->NewNode(act_out_repr()) ->assert_is_var() // is activation op's output. ->assert_more([&](Node *node) { for (auto *in_op : node->inputs) { if (conv_act_set.count(in_op->Name())) { return true; } } return false; }) ->AsOutput(); conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out}); elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y}) .LinksTo({elementwise_add_out}); elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1}) .LinksTo({elementwise_add_out_1}); act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out}); return act_out; } PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) { conv_in->AsInput(); auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d"); auto conv_out = pattern->NewNode(conv_out_repr()) ->assert_is_op_output("conv2d") ->assert_is_op_input("elementwise_add", "X") ->AsIntermediate(); auto conv_filter = pattern->NewNode(conv_filter_repr()) ->assert_is_op_input("conv2d", "Filter") ->AsInput(); auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr()) ->assert_is_op("elementwise_add"); auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr()) ->assert_is_persistable_var() ->assert_is_op_input("elementwise_add", "Y") ->AsInput(); auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr()) ->assert_is_op_output("elementwise_add") ->AsOutput(); conv_op->LinksFrom({conv_in, conv_filter}); conv_out->LinksFrom({conv_op}); elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y}) .LinksTo({elementwise_add_out}); return elementwise_add_out; } PDNode *patterns::ConvAffineChannel::operator()( paddle::framework::ir::PDNode *conv_input, bool with_eltwise_add) { // Create Operators conv_input->assert_is_op_input("conv2d", "Input"); auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d"); PDNode *eltwise_op = nullptr; if (with_eltwise_add) { eltwise_op = pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add"); } auto *affine_channel_op = pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel"); // Create variables // Conv Filter auto *conv_weight_var = pattern->NewNode(conv_weight_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_is_op_input("conv2d", "Filter"); auto *conv_out_var = pattern->NewNode(conv_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op("conv2d"); PDNode *eltwise_y_in_var = nullptr; PDNode *eltwise_out_var = nullptr; if (with_eltwise_add) { // Conv output as Bias input conv_out_var->assert_is_op_input("elementwise_add", "X"); // Bias eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr()) ->assert_is_op_input("elementwise_add", "Y") ->AsInput(); eltwise_out_var = pattern->NewNode(eltwise_out_repr()) ->AsIntermediate() ->assert_is_only_output_of_op("elementwise_add"); } else { // Conv output as AffineChannel input conv_out_var->assert_is_op_input("affine_channel", "X"); } // AC Scale auto *ac_scale_var = pattern->NewNode(ac_scale_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_has_n_outputs(1) ->assert_is_op_input("affine_channel", "Scale"); // AC Bias auto *ac_bias_var = pattern->NewNode(ac_bias_repr()) ->AsInput() ->assert_is_persistable_var() ->assert_has_n_outputs(1) ->assert_is_op_input("affine_channel", "Bias"); // AC output auto *ac_out_var = pattern->NewNode(ac_out_repr()) ->AsOutput() ->assert_is_op_output("affine_channel"); conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var}); if (with_eltwise_add) { eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var}) .LinksTo({eltwise_out_var}); affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var}) .LinksTo({ac_out_var}); } else { affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var}) .LinksTo({ac_out_var}); } return ac_out_var; } PDNode *patterns::DequantQuantAny::operator()() { auto *dequant_in = pattern->NewNode(dequant_in_repr()) ->AsInput() ->assert_is_op_input("dequantize", "Input"); auto *dequant_op = pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize"); auto *dequant_out = pattern->NewNode(dequant_out_repr()) ->AsOutput() ->assert_is_op_output("dequantize", "Output"); auto *quant_op = pattern->NewNode(quant_op_repr()) ->assert_is_op("quantize") ->AsIntermediate(); auto *quant_out = pattern->NewNode(quant_out_repr()) ->AsOutput() ->assert_is_op_output("quantize"); auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op(); dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out}); quant_op->LinksFrom({dequant_out}).LinksTo({quant_out}); next_op->LinksFrom({quant_out}); return quant_out; } PDNode *patterns::DequantAny::operator()() { auto *dequant_op = pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize"); auto *dequant_out = pattern->NewNode(dequant_out_repr()) ->AsOutput() ->assert_is_op_output("dequantize", "Output"); auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op(); dequant_op->LinksTo({dequant_out}); next_op->LinksFrom({dequant_out}); return dequant_out; } PDNode *patterns::MultipleQuantize::operator()() { auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput(); // find nodes that are inputs to quantize operators prev_out->assert_more([&](Node *node) { int counter = std::count_if( node->outputs.begin(), node->outputs.end(), [&](Node const *iter) { return iter && iter->IsOp() && iter->Op()->Type() == "quantize"; }); return (counter > 1); }); return prev_out; } PDNode *patterns::QuantizePlacement::operator()( const std::unordered_set &quantize_enabled_op_types) { std::unordered_set supported_op_types = std::unordered_set( {"concat", "conv2d", "elementwise_add", "fc", "matmul", "pool2d", "prior_box", "relu", "reshape2", "transpose2", "fusion_gru"}); if (!quantize_enabled_op_types.empty()) { supported_op_types = quantize_enabled_op_types; } auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types); return op; } PDNode *patterns::Bfloat16Placement::operator()( const std::unordered_set &bfloat16_enabled_op_types) { std::unordered_set supported_op_types = std::unordered_set( {"concat", "conv2d", "elementwise_add", "elementwise_mul", "fc", "fusion_gru", "gelu", "layer_norm", "matmul", "reshape2", "softmax", "sum", "transpose2"}); if (!bfloat16_enabled_op_types.empty()) { supported_op_types = bfloat16_enabled_op_types; } auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types); op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("use_mkldnn") || node->Op()->Type() == "reshape2"; }); return op; } PDNode *patterns::OrphanedBfloat16::operator()() { auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op(); prev_op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("mkldnn_data_type") == "float32"; }); auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput(); auto *op = pattern->NewNode(op_repr())->assert_is_op(); op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("mkldnn_data_type") == "bfloat16"; }); auto *op_out = pattern->NewNode(op_out_repr())->AsOutput(); auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op(); next_op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("mkldnn_data_type") == "float32"; }); prev_op->LinksTo({prev_out}); op->LinksFrom({prev_out}).LinksTo({op_out}); next_op->LinksFrom({op_out}); return next_op; } PDNode *patterns::LastBfloat16Ops::operator()() { auto *op = pattern->NewNode(op_repr())->assert_is_op(); op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("mkldnn_data_type") == "bfloat16"; }); auto *op_out = pattern->NewNode(op_out_repr())->AsOutput(); auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op(); next_op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("mkldnn_data_type") != "bfloat16"; }); op->LinksTo({op_out}); next_op->LinksFrom({op_out}); return next_op; } PDNode *patterns::FirstBfloat16Ops::operator()() { auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op(); prev_op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("mkldnn_data_type") != "bfloat16"; }); auto *op_in = pattern->NewNode(op_in_repr())->AsOutput(); auto *op = pattern->NewNode(op_repr())->assert_is_op(); op->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("mkldnn_data_type") == "bfloat16"; }); prev_op->LinksTo({op_in}); op->LinksFrom({op_in}); return op; } PDNode *patterns::MKLDNNInPlace::operator()() { const std::unordered_set &supported_op_types = { "abs", "elementwise_mul", "elementwise_add", "gelu", "leaky_relu", "relu", "softmax", "sqrt", "swish", "tanh"}; auto possible_inplace_op = pattern->NewNode(inplace_to_be_op_repr()) ->assert_is_ops(supported_op_types); auto input = pattern->NewNode(inplace_to_be_op_in_repr()) ->assert_is_ops_input(supported_op_types) ->AsInput(); auto output = pattern->NewNode(inplace_to_be_op_out_repr()) ->assert_is_ops_output(supported_op_types) ->AsOutput(); auto next_op = pattern->NewNode(next_op_repr())->assert_is_op(); auto next_output = pattern->NewNode(next_op_out_repr())->AsOutput(); // Check if op is MKL-DNN enabled possible_inplace_op->assert_op_attr("use_mkldnn", true); // linked structure possible_inplace_op->LinksTo({output}); possible_inplace_op->LinksFrom({input}); next_op->LinksFrom({output}); next_op->LinksTo({next_output}); return possible_inplace_op; } // a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a // b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b // ... // z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z // flatten_out_a -> concat_op flatten_out_b -> concat_op ... flatten_out_z -> // concat_op PDNode *patterns::TransposeFlattenConcat::operator()( std::vector conv_in, int times) { // The times represents the repeat times of the // {trans, trans_out, flatten, flatten_out} const int kNumFields = 4; const int kTransOutOffset = 1; const int kFlattenOffset = 2; const int kFlattenOutOffset = 3; std::vector nodes; for (int i = 0; i < times; i++) { nodes.push_back( pattern->NewNode(GetNodeName("transpose" + std::to_string(i))) ->assert_is_op("transpose2")); nodes.push_back( pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i))) ->assert_is_op_output("transpose2") ->assert_is_op_input("flatten2", "X") ->AsIntermediate()); nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i))) ->assert_is_op("flatten2")); nodes.push_back( pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i))) ->assert_is_op_output("flatten2") ->assert_is_op_nth_input("concat", "X", i) ->AsIntermediate()); } auto concat_op = pattern->NewNode(GetNodeName("concat")) ->assert_is_op("concat") ->assert_op_has_n_inputs("concat", times); auto concat_out = pattern->NewNode(GetNodeName("concat_out")) ->assert_is_op_output("concat") ->AsOutput(); std::vector flatten_outs; for (int i = 0; i < times; i++) { conv_in[i]->AsInput(); // trans nodes[i * kNumFields]->LinksFrom({conv_in[i]}); // trans_out nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]}); // flatten nodes[i * kNumFields + kFlattenOffset]->LinksFrom( {nodes[i * kNumFields + kTransOutOffset]}); // flatten_out nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom( {nodes[i * kNumFields + kFlattenOffset]}); flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]); } concat_op->LinksFrom(flatten_outs).LinksTo({concat_out}); return concat_out; } void patterns::DeleteQuantOpFuse::operator()(PDNode *input_act_node, const std::string &quant_type) { auto *input_scale_node = pattern->NewNode(GetNodeName("input_scale_node")) ->assert_is_op_input(quant_type, "InScale") ->AsInput(); auto *quant_node = pattern->NewNode(GetNodeName("quant_node"))->assert_is_op(quant_type); auto *output_scale_node = pattern->NewNode(GetNodeName("output_scale_node")) ->assert_is_op_output(quant_type, "OutScale") ->AsOutput(); auto *output_act_node = pattern->NewNode(GetNodeName("output_act_node")) ->assert_is_op_output(quant_type, "Out") ->AsOutput(); quant_node->LinksFrom({input_scale_node, input_act_node}); output_scale_node->LinksFrom({quant_node}); output_act_node->LinksFrom({quant_node}); } void patterns::DequantOpFuse::operator()(PDNode *quantized_op_input, const std::string &quantized_op_type, const std::string &dequant_type, const std::string &weight_name) { auto *quantized_op_weight = pattern->NewNode(GetNodeName("quantized_op_weight")) ->assert_is_op_input(quantized_op_type, weight_name) ->AsInput(); auto *quantized_op = pattern->NewNode(GetNodeName("quantized_op")) ->assert_is_op(quantized_op_type); auto *quantized_op_out = pattern->NewNode(GetNodeName("quantized_op_out")) ->assert_is_op_output(quantized_op_type) ->assert_is_op_input(dequant_type, "X"); auto *dequant_op = pattern->NewNode(GetNodeName("dequant_op"))->assert_is_op(dequant_type); auto *dequant_op_out = pattern->NewNode(GetNodeName("dequant_op_out")) ->assert_is_op_output(dequant_type, "Out") ->AsOutput(); PDNode *dequant_channel_scale = nullptr; if (dequant_type == "fake_channel_wise_dequantize_max_abs") { dequant_channel_scale = pattern->NewNode(GetNodeName("dequant_channel_scale")) ->assert_is_op_nth_input(dequant_type, "Scales", 0) ->AsInput(); } quantized_op->LinksFrom({quantized_op_input, quantized_op_weight}); quantized_op_out->LinksFrom({quantized_op}); if (dequant_type == "fake_channel_wise_dequantize_max_abs") { dequant_op->LinksFrom({quantized_op_out, dequant_channel_scale}); } else { dequant_op->LinksFrom({quantized_op_out}); } dequant_op_out->LinksFrom({dequant_op}); } void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) { auto reshape1_op = pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2"); reshape1_op->assert_more([&](Node *x) { return BOOST_GET_CONST(std::vector, x->Op()->GetAttr("shape")) .size() == 5; }); auto reshape1_out = pattern->NewNode(reshape1_out_repr()) ->assert_is_op_output("reshape2", "Out") ->assert_is_op_input("transpose2") ->AsIntermediate(); auto transpose_op = pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2"); auto transpose_out = pattern->NewNode(transpose_out_repr()) ->assert_is_op_output("transpose2", "Out") ->assert_is_op_input("reshape2") ->AsIntermediate(); auto reshape2_op = pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2"); auto reshape2_out = pattern->NewNode(reshape2_out_repr()) ->assert_is_op_output("reshape2", "Out") ->AsOutput(); reshape1_op->LinksFrom({reshape1_in}); reshape1_out->LinksFrom({reshape1_op}); transpose_op->LinksFrom({reshape1_out}); transpose_out->LinksFrom({transpose_op}); reshape2_op->LinksFrom({transpose_out}); reshape2_out->LinksFrom({reshape2_op}); } void patterns::DeleteQuantDequantOpPattern::operator()() { auto any_op_out = pattern->NewNode(any_op_out_repr()) ->assert_is_op_input( "fake_quantize_dequantize_moving_average_abs_max", "X") ->AsInput(); auto quant_dequant_op_inscale = pattern->NewNode(quant_dequant_op_inscale_repr()) ->assert_is_op_input( "fake_quantize_dequantize_moving_average_abs_max", "InScale") ->AsInput(); auto quant_dequant_op = pattern->NewNode(quant_dequant_op_repr()) ->assert_is_op("fake_quantize_dequantize_moving_average_abs_max"); auto quant_dequant_out = pattern->NewNode(quant_dequant_op_out_repr()) ->assert_is_op_output( "fake_quantize_dequantize_moving_average_abs_max", "Out") ->AsIntermediate(); auto quant_dequant_op_outscale = pattern->NewNode(quant_dequant_op_outscale_repr()) ->assert_is_op_output( "fake_quantize_dequantize_moving_average_abs_max", "OutScale") ->AsOutput(); auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput(); quant_dequant_op->LinksFrom({any_op_out, quant_dequant_op_inscale}); quant_dequant_op_outscale->LinksFrom({quant_dequant_op}); quant_dequant_out->LinksFrom({quant_dequant_op}); any_op2->LinksFrom({quant_dequant_out}); } PDNode *patterns::ReshapeTransposeMatmulPattern::operator()( bool with_reshape_xshape, bool with_transpose_xshape) { auto reshape_op = pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2"); auto transpose_op = pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2"); auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul"); auto reshape_in = pattern->NewNode(reshape_in_repr()) ->AsInput() ->assert_is_op_input("reshape2", "X"); auto reshape_out = pattern->NewNode(reshape_out_repr()) ->AsIntermediate() ->assert_is_op_input("transpose2", "X") ->assert_is_op_output("reshape2", "Out"); if (!with_reshape_xshape) reshape_out->assert_is_only_output_of_op("reshape2"); auto reshape_xshape = with_reshape_xshape ? pattern->NewNode(reshape_xshape_repr()) ->AsIntermediate() ->assert_is_op_output("reshape2", "XShape") : nullptr; auto transpose_out = pattern->NewNode(transpose_out_repr()) ->AsIntermediate() ->assert_is_op_input("matmul") ->assert_is_op_output("transpose2", "Out"); if (!with_transpose_xshape) transpose_out->assert_is_only_output_of_op("transpose2"); auto transpose_xshape = with_transpose_xshape ? pattern->NewNode(transpose_xshape_repr()) ->AsIntermediate() ->assert_is_op_output("transpose2", "XShape") : nullptr; auto matmul_out = pattern->NewNode(matmul_out_repr()) ->AsOutput() ->assert_is_op_output("matmul", "Out"); reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out}); if (with_reshape_xshape) reshape_op->LinksTo({reshape_xshape}); transpose_op->LinksFrom({reshape_out}).LinksTo({transpose_out}); if (with_transpose_xshape) transpose_op->LinksTo({transpose_xshape}); matmul_op->LinksFrom({transpose_out}).LinksTo({matmul_out}); return matmul_out; } PDNode *patterns::MatmulTransposeReshapePattern::operator()() { auto reshape_op = pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2"); auto transpose_op = pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2"); auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul"); auto matmul_out = pattern->NewNode(matmul_out_repr()) ->AsInput() ->assert_is_op_output("matmul", "Out") ->assert_is_op_input("transpose2", "X"); auto transpose_out = pattern->NewNode(transpose_out_repr()) ->AsIntermediate() ->assert_is_op_output("transpose2", "Out") ->assert_is_op_input("reshape2", "X"); auto transpose_out_xshape = pattern->NewNode(transpose_out_xshape_repr()) ->AsIntermediate() ->assert_is_op_output("transpose2", "XShape"); auto reshape_out = pattern->NewNode(reshape_out_repr()) ->AsOutput() ->assert_is_op_output("reshape2"); auto reshape_out_xshape = pattern->NewNode(reshape_out_xshape_repr()) ->AsIntermediate() ->assert_is_op_output("reshape2", "XShape"); matmul_op->LinksTo({matmul_out}); transpose_op->LinksTo({transpose_out_xshape}); reshape_op->LinksTo({reshape_out_xshape}); transpose_op->LinksFrom({matmul_out}).LinksTo({transpose_out}); reshape_op->LinksFrom({transpose_out}).LinksTo({reshape_out}); return reshape_out; } PDNode *patterns::FusionGru::operator()() { auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_gru"); auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input( "fusion_gru", "X"); auto weight_h = pattern->NewNode(weight_h_repr()) ->AsInput() ->assert_is_op_input("fusion_gru", "WeightH"); auto weight_x = pattern->NewNode(weight_x_repr()) ->AsInput() ->assert_is_op_input("fusion_gru", "WeightX"); auto out = pattern->NewNode(out_repr()) ->AsOutput() ->assert_is_op_output("fusion_gru", "Hidden"); op->LinksFrom({x, weight_h, weight_x}).LinksTo({out}); return out; } PDNode *patterns::TwoFusionGruConcat::operator()() { auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input( "fusion_gru", "X"); auto gru1 = pattern->NewNode(gru1_repr()) ->assert_is_op("fusion_gru") ->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("is_reverse") == false; }); auto gru2 = pattern->NewNode(gru2_repr()) ->assert_is_op("fusion_gru") ->assert_more([&](Node *node) { return node->Op()->GetAttrIfExists("is_reverse") == true; }); auto wh1 = pattern->NewNode(wh1_repr()) ->AsInput() ->assert_is_op_input("fusion_gru", "WeightH"); auto wh2 = pattern->NewNode(wh2_repr()) ->AsInput() ->assert_is_op_input("fusion_gru", "WeightH"); auto wx1 = pattern->NewNode(wx1_repr()) ->AsInput() ->assert_is_op_input("fusion_gru", "WeightX"); auto wx2 = pattern->NewNode(wx2_repr()) ->AsInput() ->assert_is_op_input("fusion_gru", "WeightX"); auto b1 = pattern->NewNode(b1_repr())->AsInput()->assert_is_op_input( "fusion_gru", "Bias"); auto b2 = pattern->NewNode(b2_repr())->AsInput()->assert_is_op_input( "fusion_gru", "Bias"); auto h1 = pattern->NewNode(h1_repr()) ->AsOutput() ->assert_is_op_output("fusion_gru", "Hidden") ->assert_is_op_input("concat") ->AsIntermediate(); auto h2 = pattern->NewNode(h2_repr()) ->AsOutput() ->assert_is_op_output("fusion_gru", "Hidden") ->assert_is_op_input("concat") ->AsIntermediate(); auto concat = pattern->NewNode(concat_repr())->assert_is_op("concat"); auto out = pattern->NewNode(out_repr()) ->AsOutput() ->assert_is_op_output("concat", "Out"); gru1->LinksFrom({x, wh1, wx1, b1}).LinksTo({h1}); gru2->LinksFrom({x, wh2, wx2, b2}).LinksTo({h2}); concat->LinksFrom({h1, h2}).LinksTo({out}); return out; } PDNode *patterns::MultiGruSeq::operator()() { auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input( "multi_gru", "X"); auto gru1 = pattern->NewNode(gru1_repr())->assert_is_op("multi_gru"); auto wx11 = pattern->NewNode(wx11_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightX", 0); auto wx12 = pattern->NewNode(wx12_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightX", 1); auto wh11 = pattern->NewNode(wh11_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightH", 0); auto wh12 = pattern->NewNode(wh12_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightH", 1); auto b11 = pattern->NewNode(b11_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "Bias", 0); auto b12 = pattern->NewNode(b12_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "Bias", 1); auto h1 = pattern->NewNode(h1_repr()) ->AsOutput() ->assert_is_op_output("multi_gru", "Hidden") ->assert_is_op_input("multi_gru", "X") ->AsIntermediate(); auto gru2 = pattern->NewNode(gru2_repr())->assert_is_op("multi_gru"); auto wx21 = pattern->NewNode(wx21_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightX", 0); auto wx22 = pattern->NewNode(wx22_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightX", 1); auto wh21 = pattern->NewNode(wh21_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightH", 0); auto wh22 = pattern->NewNode(wh22_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "WeightH", 1); auto b21 = pattern->NewNode(b21_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "Bias", 0); auto b22 = pattern->NewNode(b22_repr()) ->AsInput() ->assert_is_op_nth_input("multi_gru", "Bias", 1); auto h2 = pattern->NewNode(h2_repr())->AsOutput()->assert_is_op_output( "multi_gru", "Hidden"); gru1->LinksFrom({x, wx11, wx12, wh11, wh12, b11, b12}).LinksTo({h1}); gru2->LinksFrom({h1, wx21, wx22, wh21, wh22, b21, b22}).LinksTo({h2}); return h2; } } // namespace ir } // namespace framework } // namespace paddle