/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/sparse/addmm_kernel.h" #include #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/funcs/sparse/sparse_blas.h" namespace phi { namespace sparse { template void AddmmKernelImpl(const Context& dev_ctx, const DenseTensor& input, const TensorType& x, const DenseTensor& y, float alpha, float beta, DenseTensor* out) { #if CUDA_VERSION >= 11000 std::vector input_dim = phi::vectorize(input.dims()); std::vector x_dim = phi::vectorize(x.dims()); std::vector y_dim = phi::vectorize(y.dims()); auto rank = input_dim.size(); PADDLE_ENFORCE_GE( rank, 2, phi::errors::InvalidArgument( "the dims size of input must be greater than or eaqual to 2.")); PADDLE_ENFORCE_EQ( x_dim.size(), rank, phi::errors::PreconditionNotMet( "The dims size of Input(input) and Input(x) must be eaqual.")); PADDLE_ENFORCE_GE( y_dim.size(), rank, phi::errors::InvalidArgument( "the dims size of Input(input) and Input(y) must be eaqual.")); for (size_t i = 0; i < rank - 2; ++i) { PADDLE_ENFORCE_EQ(input_dim[i], x_dim[i], phi::errors::InvalidArgument( "input.dim[%d] and x.dim[%d] must be eaqul.", i, i)); PADDLE_ENFORCE_EQ(input_dim[i], y_dim[i], phi::errors::InvalidArgument( "input.dim[%d] and y.dim[%d] must be eaqul.", i, i)); } PADDLE_ENFORCE_GE( input_dim[rank - 2], x_dim[rank - 2], phi::errors::PreconditionNotMet( "The shape of Input(input) and Input(x) is not suitable for matmul " "opetation, input_dim[-2] must be eaqual to x_dim[-2].")); PADDLE_ENFORCE_GE( input_dim[rank - 1], y_dim[rank - 1], phi::errors::PreconditionNotMet( "The shape of Input(input) and Input(y) is not suitable for matmul " "opetation, input_dim[-1] must be eaqual to y_dim[-1].")); PADDLE_ENFORCE_GE( x_dim[rank - 1], y_dim[rank - 2], phi::errors::PreconditionNotMet( "The shape of Input(x) and Input(y) is not suitable for matmul " "opetation, x_dim[-1] must be eaqual to y_dim[-2].")); phi::Copy(dev_ctx, input, dev_ctx.GetPlace(), false, out); auto sparse_blas = phi::funcs::sparse::GetSparseBlas(dev_ctx); sparse_blas.SPMM( false, false, static_cast(alpha), x, y, static_cast(beta), out); #else PADDLE_THROW( phi::errors::Unimplemented("forward of 'sparse.addmm' use cusparseSpMM, " "which is supported from CUDA 11.0")); #endif } template void AddmmCooDenseKernel(const Context& dev_ctx, const DenseTensor& input, const SparseCooTensor& x, const DenseTensor& y, float alpha, float beta, DenseTensor* out) { AddmmKernelImpl(dev_ctx, input, x, y, alpha, beta, out); } template void AddmmCsrDenseKernel(const Context& dev_ctx, const DenseTensor& input, const SparseCsrTensor& x, const DenseTensor& y, float alpha, float beta, DenseTensor* out) { AddmmKernelImpl(dev_ctx, input, x, y, alpha, beta, out); } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(addmm_coo_dense, GPU, ALL_LAYOUT, phi::sparse::AddmmCooDenseKernel, float, double) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); } PD_REGISTER_KERNEL(addmm_csr_dense, GPU, ALL_LAYOUT, phi::sparse::AddmmCsrDenseKernel, float, double) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); }