# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * num_classes = 5 x = data_layer(name="input1", size=3) y = data_layer(name="input2", size=5) z = out_prod_layer(input1=x, input2=y) x1 = fc_layer(input=x, size=5) y1 = fc_layer(input=y, size=5) z1 = mixed_layer( act=LinearActivation(), input=[ conv_operator( img=x1, filter=y1, filter_size=1, num_filters=5, num_channels=5, stride=1) ]) assert z1.size > 0 y2 = fc_layer(input=y, size=15) z2 = rotate_layer(input=y2, height=5) z3 = flip_layer(input=y2, height=3) cos1 = cos_sim(a=x1, b=y1) cos3 = cos_sim(a=x1, b=y2, size=3) linear_comb = linear_comb_layer(weights=x1, vectors=y2, size=3) out = fc_layer( input=[cos1, cos3, linear_comb, z, z1, z2, z3], size=num_classes, act=SoftmaxActivation()) print_layer(input=[out]) outputs(classification_cost(out, data_layer(name="label", size=num_classes))) dotmul = mixed_layer( input=[dotmul_operator( a=x1, b=x1), dotmul_projection(input=y1)]) proj_with_attr_init = mixed_layer( input=full_matrix_projection( input=y1, param_attr=ParamAttr( learning_rate=0, initial_mean=0, initial_std=0)), bias_attr=ParamAttr( initial_mean=0, initial_std=0, learning_rate=0), act=LinearActivation(), size=5, name='proj_with_attr_init') # for ctc tmp = fc_layer( input=[x1, dotmul, proj_with_attr_init], size=num_classes + 1, act=SoftmaxActivation()) ctc = ctc_layer(input=tmp, label=y, size=num_classes + 1) ctc_eval = ctc_error_evaluator(input=tmp, label=y) settings( batch_size=10, learning_rate=2e-3, learning_method=AdamOptimizer(), regularization=L2Regularization(8e-4), gradient_clipping_threshold=25)