# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core import gradient_checker from decorator_helper import prog_scope paddle.enable_static() class TestMulGradCheck(unittest.TestCase): @prog_scope() def func(self, place): prog = fluid.Program() with fluid.program_guard(prog): x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x') y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y') z = layers.mul(x=x, y=y) gradient_checker.grad_check([x, y], z, place=place) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestSliceOpDoubleGradCheck(unittest.TestCase): def func(self, place): self.config() out = fluid.layers.slice( self.inputs, axes=self.axes, starts=self.starts, ends=self.ends) gradient_checker.double_grad_check( [self.inputs], out, x_init=self.x_arr, place=place) def config(self): self.starts = [1, 0, -1] self.ends = [3, 3, 6] self.axes = [0, 1, 2] self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64") self.inputs = layers.create_parameter( dtype="float64", shape=[3, 4, 5, 2], name='x') def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: self.func(place) class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck): def config(self): self.starts = [1, -1, 1] self.ends = [3, 3, 3] self.axes = [0, 1, 2] self.x_arr = np.random.random([3, 3, 3]).astype("float64") self.inputs = layers.create_parameter( dtype="float64", shape=[3, 3, 3], name='x3') class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [7, 11] eps = 0.05 dtype = np.float64 x = layers.data('x', shape, False, dtype) x.persistable = True y = layers.reduce_mean(x, dim=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.double_grad_check( [x], y, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [7, 11] eps = 0.05 dtype = np.float64 x = layers.data('x', shape, False, dtype) x.persistable = True y = layers.reduce_sum(x, dim=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.double_grad_check( [x], y, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestMulDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. x_shape = [7, 11] y_shape = [11, 9] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True y = layers.data('y', y_shape, False, dtype) y.persistable = True out = layers.mul(x, y) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestMatmulDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): eps = 0.005 x_shapes = [[2], [2, 3], [2, 4, 3], [2, 3, 4, 5], [2, 3, 4]] y_shapes = [[2], [3, 2], [2, 4, 5], [2, 3, 3, 5], [4, 3]] transpose_xs = [False, True, True, False, False] transpose_ys = [False, True, False, True, False] dtype = np.float64 typename = "float64" for i, (x_shape, y_shape, transpose_x, transpose_y) \ in enumerate(zip(x_shapes, y_shapes, transpose_xs, transpose_ys)): x = layers.create_parameter( dtype=typename, shape=x_shape, name='x{}'.format(i)) y = layers.create_parameter( dtype=typename, shape=y_shape, name='y{}'.format(i)) out = layers.matmul( x, y, transpose_x, transpose_y, name='out{}'.format(i)) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestReshapeDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [3, 12] expand_times = [4, 9] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = layers.expand(x, expand_times) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( [x], out, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestExpandDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [3, 12] new_shape = [4, 9] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = layers.reshape(x, new_shape) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( [x], out, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestTileDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [3, 12] repeat_times = [4, 9] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = paddle.tile(x, repeat_times) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( [x], out, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestExpandV2DoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [1, 12] new_shape = [4, 12] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = paddle.expand(x, new_shape) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( [x], out, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestSqueezeDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [1, 3, 1, 40] axes = [0, 2] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = paddle.squeeze(x, axes) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( [x], out, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestUnsqueezeDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [3, 40] axes = [1, 2] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = paddle.unsqueeze(x, axes) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( [x], out, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestClipDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [2, 4, 10] dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = paddle.clip(x, min=-1., max=1.) x_arr = np.random.uniform(-5., 5., x_shape).astype(dtype) gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestTransposeDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [3, 40] perm = [1, 0] dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = paddle.transpose(x, perm) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestTransposeDoubleGradCheckCase1(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [2, 3, 4, 5] perm = [0, 2, 3, 1] dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = paddle.transpose(x, perm) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": unittest.main()