# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defination of Role Makers.""" from __future__ import print_function import multiprocessing import paddle.fluid as fluid import os import sys import time __all__ = [ 'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker', 'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker' ] class Role: WORKER = 1 SERVER = 2 class MockBarrier(object): """ MockBarrier is a empty impletation for barrier mock as a real barrier for never-barrier in a specific scenario """ def barrier(self): """ dummy barrier, do nothing """ pass def barrier_all(self): """ dummy all barrier, do nothing """ pass def all_reduce(self, obj): """ dummy all reduce, do nothing Args: obj(any): obj to do all reduce """ return obj def all_gather(self, obj): """ dummy all gather, do nothing Args: obj(any): obj to do all gather """ return [obj] class RoleMakerBase(object): """ RoleMakerBase is a base class for assigning a role to current process in distributed training. A paddle developer can implement RoleMakerBase to design a role maker for worker or pserver assignment. """ def __init__(self): self._worker_endpoints = [] self._server_endpoints = [] self._role_is_generated = False self._role = None self._current_id = -1 def is_worker(self): """ return is_worker() of current process """ raise NotImplementedError("Please implement this method in child class") def is_server(self): """ return is_server() of current process """ raise NotImplementedError("Please implement this method in child class") def is_first_worker(self): """ Check whether the node is the first instance of worker. Returns: bool: True if this is the first node of worker, False if not. """ raise NotImplementedError("Please implement this method in child class") def worker_num(self): """ Get current total worker number. Returns: int: worker number """ raise NotImplementedError("Please implement this method in child class") def worker_index(self): """ Get current worker id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def server_index(self): """ Get current server id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def get_trainer_endpoints(self): """ return trainer endpoints """ return self._worker_endpoints def get_pserver_endpoints(self): """ return pserver endpoints """ return self._server_endpoints def to_string(self): return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format( self._role, self._current_id, self._worker_endpoints, self._server_endpoints) def all_gather(self, input): """ all gather between trainers and pservers Args: input(int|float): input value Returns: return a list of values """ print("warning: RoleMakerBase does not have all gather.") return None def all_reduce_worker(self, input, output, mode="sum"): """ all reduce between trainers if current role is TRAINER, only support array of one dim. Args: input(list/numpy.array): array of one dim output(list/numpy.array): array of one dim mode(str): "sum" or "min" or "max" """ print("warning: RoleMakerBase does not have all reduce worker.") def barrier_worker(self): """ barrier between trainers if current role is TRAINER """ print("warning: RoleMakerBase does not have barrier worker.") def barrier_all(self): """ barrier between trainers if current role is PSERVER """ print("warning: RoleMakerBase does not have barrier all.") class MPIRoleMaker(RoleMakerBase): """ MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker mpi4py will be used if a developer inherits MPIRoleMaker """ def __init__(self): """Init.""" super(MPIRoleMaker, self).__init__() from mpi4py import MPI self.MPI = MPI self._comm = MPI.COMM_WORLD self._node_type_comm = None self._ips = None self._ip = None def _get_rank(self): """Return rank.""" self._rank = self._comm.Get_rank() return self._rank def _get_size(self): """Return size.""" self._size = self._comm.Get_size() return self._size def _all_gather(self, obj): """ all_gather(obj) will call MPI's allgather function """ self._barrier_all() return self._comm.allgather(obj) def _worker_gather(self, obj): """ worker_gather(obj) will call MPI's allgather function """ if self.is_worker(): self._node_type_comm.barrier() return self._node_type_comm.allgather(obj) return None def _barrier_all(self): """ barrier_all() will call MPI's barrier_all function """ self._comm.barrier() def _finalize(self): """ finalize the current MPI instance. """ self.MPI.Finalize() def _get_ips(self): """ collect current distributed job's ip list """ if not self._ips: self._ips = self._comm.allgather(self.get_local_ip()) return self._ips def get_local_ip(self): """Return get local ip.""" import socket self._ip = socket.gethostbyname(socket.gethostname()) return self._ip def generate_role(self): """ generate_role() should be called to identify current process's role """ raise NotImplementedError("Please implement this method in child class") class MPISymetricRoleMaker(MPIRoleMaker): """ MPISymetricRoleMaker is designed for worker and server assignment under MPI. Typically, a worker and a server node will be appointed on each physical node. This role maker can be only used under MPI. """ def __init__(self): """Init.""" super(MPISymetricRoleMaker, self).__init__() self._node_type = None self._proc_per_node = 2 self._pserver_rand_port = 0 def _check_role_generation(self): """Check whether role has been generated.""" if not self._role_is_generated: raise NameError("generate_role() should be called first") return True def all_gather(self, input): """ all gather between trainers and pservers Args: input(int|float): input value Returns: return a list of values """ if not self._role_is_generated: self.generate_role() return self._all_gather(input) def all_reduce_worker(self, input, output, mode="sum"): """ all reduce between trainers if current role is TRAINER, only support array of one dim. Args: input(list/numpy.array): array of one dim output(list/numpy.array): array of one dim mode(str): "sum" or "min" or "max" """ if not self._role_is_generated: self.generate_role() if not self.is_worker(): print("warning: current role is not worker in all_reduce_worker") return self._all_reduce(input, output, mode) def barrier_worker(self): """ barrier between trainers if current role is TRAINER """ if not self._role_is_generated: self.generate_role() if self.is_worker(): self._node_type_comm.barrier() else: print("warning: current role is not worker in barrier_worker") def barrier_all(self): """ barrier between trainers if current role is PSERVER """ if not self._role_is_generated: self.generate_role() self._comm.barrier() def is_first_worker(self): """ return whether current process is the first worker assigned by role maker """ if self._check_role_generation(): return self.is_worker() and 0 == self.worker_index() return False def get_pserver_endpoints(self): """ get pserver endpoints Returns: endpoints(list): pserver endpoints """ if self._pserver_rand_port <= 0: import random random.seed(self._server_num()) # port will be randomly generated from 60001 to 63999 # random seed is server num so that all nodes will get # the same port self._pserver_rand_port = random.randint(60001, 64000) endpoints = [ x + ":" + str(self._pserver_rand_port) for x in self._server_endpoints ] return endpoints def worker_num(self): return self._worker_num() def is_worker(self): """ return whether current process is worker assigned by role maker """ if self._check_role_generation(): return self._node_type == 1 return False def is_server(self): """ return whether current process is server assigned by role maker """ if self._check_role_generation(): return self._node_type == 0 return False def _worker_num(self): """ return the current number of worker """ if self._check_role_generation(): return self._get_size() / self._proc_per_node return 0 def _server_num(self): """ return the current number of server """ if self._check_role_generation(): return self._get_size() / self._proc_per_node else: self.generate_role() return self._get_size() / self._proc_per_node def worker_index(self): """ return the index of worker """ if self._check_role_generation(): return self._rank / self._proc_per_node else: self.generate_role() return self._get_size() / 2 def server_index(self): """ return the index of server """ if self._check_role_generation(): return self._rank / self._proc_per_node else: self.generate_role() return self._get_size() / self._proc_per_node def _all_reduce(self, input, output, mode="sum"): """ all reduce between trainers if current role is TRAINER, only support array of one dim. Args: input(list/numpy.array): array of one dim output(list/numpy.array): array of one dim mode(str): "sum" or "min" or "max" """ if not self._role_is_generated: self.generate_role() if mode == "sum": mode = self.MPI.SUM elif mode == "max": mode = self.MPI.MAX elif mode == "min": mode = self.MPI.MIN else: raise ValueError("unknown mode: %s" % mode) self._node_type_comm.Allreduce(input, output, op=mode) def _barrier_worker(self): """ barrier all workers in current distributed job """ if self._check_role_generation(): if self.is_worker(): self._node_type_comm.barrier() else: raise Exception("You should check role generation first") def _barrier_server(self): """ barrier all servers in current distributed job """ if self._check_role_generation(): if self.is_server(): self._node_type_comm.barrier() else: raise Exception("You should check role generation first") def generate_role(self): """ generate currently process's role """ if not self._role_is_generated: # TODO(guru4elephant): only allow to be called once self._worker_endpoints = self._get_ips()[1::2] self._server_endpoints = self._get_ips()[::2] if 0 == self._get_rank() % self._proc_per_node % 2: self._node_type = 0 else: self._node_type = 1 self._node_type_comm = self._comm.Split(self._node_type) self._role_is_generated = True else: raise Exception("You should check role generation first") class PaddleCloudRoleMaker(RoleMakerBase): """ role maker for paddle cloud, base class is RoleMakerBase """ def __init__(self, is_collective=False): super(PaddleCloudRoleMaker, self).__init__() self._role_is_generated = False self._is_collective = is_collective def generate_role(self): """Generate role.""" if not self._role_is_generated: if not self._is_collective: try: # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set # format: string(ip:port), eg. 127.0.0.1:6001 eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split( ",") # note that, we usually assign the same port to different ips # if we run parameter server training in local mode # port should be different in environment variables trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"]) training_role = os.environ["TRAINING_ROLE"] if training_role not in ["TRAINER", "PSERVER"]: raise ValueError( "TRAINING_ROLE must be PSERVER or TRAINER") if training_role == "TRAINER": role = Role.WORKER current_id = int(os.environ["PADDLE_TRAINER_ID"]) elif training_role == "PSERVER": role = Role.SERVER cur_ip = os.environ["POD_IP"] curr_port = os.environ["PADDLE_PORT"] curr_endpoint = ":".join([cur_ip, curr_port]) current_id = eplist.index(curr_endpoint) else: raise ValueError( "TRAINING_ROLE must be PSERVER or TRAINER") except ValueError as ve: raise ValueError( "something wrong with PaddleCloud, please check environment" ) self._trainers_num = trainers_num self._server_endpoints = eplist self._role = role self._current_id = current_id else: self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER") assert (self._training_role == "TRAINER") self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS") self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS" self._worker_endpoints = self._worker_endpoints.split(",") self._trainers_num = len(self._worker_endpoints) self._role_is_generated = True def get_pserver_endpoints(self): if not self._role_is_generated: self.generate_role() return self._server_endpoints def is_worker(self): if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER def is_server(self): if not self._role_is_generated: self.generate_role() return self._role == Role.SERVER def is_first_worker(self): if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): if not self._role_is_generated: self.generate_role() return self._current_id def server_index(self): if not self._role_is_generated: self.generate_role() return self._current_id def worker_num(self): if not self._role_is_generated: self.generate_role() return self._trainers_num class GeneralRoleMaker(RoleMakerBase): """ This role maker is for general use, you can set os.environ to customize: PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ',' PADDLE_TRAINER_ENDPOINTS : all trainers' ip:port, separated by ',' TRAINING_ROLE : TRAINER or PSERVER PADDLE_TRAINER_ID : current trainer id (only for trainer), it is index in PADDLE_TRAINER_ENDPOINTS PADDLE_PSERVER_ID : current pserver id (only for pserver) it is index in PADDLE_PSERVERS_IP_PORT_LIST """ def __init__(self, **kwargs): super(RoleMakerBase, self).__init__() self._role_is_generated = False self._hdfs_name = kwargs.get("hdfs_name", "") self._hdfs_ugi = kwargs.get("hdfs_ugi", "") self._hdfs_path = kwargs.get("path", "").rstrip("/") self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600) self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999) self._use_metric = kwargs.get("use_metric", False) ip_port = kwargs.get("http_ip_port", "") self._http_ip_port = [] self._http_server = None # if ip_port is not empty, it will use http instead of hdfs if ip_port != "": self._http_ip_port = ip_port.split(":") # it's for communication between processes self._manager = multiprocessing.Manager() # global dict to store status self._http_server_d = self._manager.dict() # set running status of http server self._http_server_d["running"] = False self._iface = self.__get_default_iface() self._iface = "" if self._iface == "lo" else self._iface # this environment variable can be empty self._prefix = os.getenv("SYS_JOB_ID", "") def generate_role(self): """ generate role for general role maker """ if not self._role_is_generated: eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",") training_role = os.environ["TRAINING_ROLE"] worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",") trainers_num = len(worker_endpoints) if training_role not in ["TRAINER", "PSERVER"]: raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER") self._is_barrier_all = 1 if "PADDLE_IS_BARRIER_ALL_ROLE" in os.environ: self._is_barrier_all = int(os.environ[ "PADDLE_IS_BARRIER_ALL_ROLE"]) if training_role == "TRAINER": role = Role.WORKER current_id = int(os.environ["PADDLE_TRAINER_ID"]) if current_id == 0 and len(self._http_ip_port) != 0: size_d = { "trainer": len(worker_endpoints), "pserver": len(eplist), "all": len(worker_endpoints) + len(eplist) } # child process for http server if sys.version_info >= (3, 8) and sys.platform == 'darwin': self._http_server = multiprocessing.get_context( 'fork').Process( target=self.__start_kv_server, args=(self._http_server_d, size_d)) else: self._http_server = multiprocessing.Process( target=self.__start_kv_server, args=(self._http_server_d, size_d)) self._http_server.daemon = True # set running status to True self._http_server_d["running"] = True # start child process self._http_server.start() self._node_type = 1 self._cur_endpoint = worker_endpoints[current_id] if self._is_barrier_all: gloo = fluid.core.Gloo() gloo.set_rank(current_id) gloo.set_size(len(worker_endpoints)) gloo.set_prefix(self._prefix) gloo.set_iface(self._iface) gloo.set_timeout_seconds(self._init_timeout_seconds, self._run_timeout_seconds) if len(self._http_ip_port) != 0: gloo.set_http_store(self._http_ip_port[0], int(self._http_ip_port[1]), "trainer") else: gloo.set_hdfs_store(self._hdfs_path + "/trainer", self._hdfs_name, self._hdfs_ugi) gloo.init() self._node_type_comm = gloo if self._use_metric: Gloo_strategy = fluid.core.GlooParallelStrategy() Gloo_strategy.rank = current_id Gloo_strategy.rank_num = len(worker_endpoints) # Gloo_strategy.ip_address = self._http_ip_port[0] # Gloo_strategy.ip_port = int(self._http_ip_port[1]) Gloo_strategy.hdfs_path = self._hdfs_path + "/trainer" Gloo_strategy.hdfs_name = self._hdfs_name Gloo_strategy.hdfs_ugi = self._hdfs_ugi Default_init_timeout_seconds = 3600 Default_run_timeout_seconds = 9999999 Gloo_strategy.init_seconds = Default_init_timeout_seconds Gloo_strategy.run_seconds = Default_run_timeout_seconds Gloo = fluid.core.GlooParallelContext(Gloo_strategy) Gloo.init() else: self._all_comm = MockBarrier() elif training_role == "PSERVER": role = Role.SERVER if os.environ.get("PADDLE_PSERVER_ID") is not None: current_id = int(os.environ["PADDLE_PSERVER_ID"]) cur_endpoint = eplist[current_id] else: # this is for compatible with paddlecloud cur_ip = os.environ["POD_IP"] cur_port = os.environ["PADDLE_PORT"] cur_endpoint = ":".join([cur_ip, cur_port]) current_id = eplist.index(cur_endpoint) self._node_type = 0 self._cur_endpoint = cur_endpoint gloo = fluid.core.Gloo() gloo.set_rank(current_id) gloo.set_size(len(eplist)) gloo.set_prefix(self._prefix) gloo.set_iface(self._iface) gloo.set_timeout_seconds(self._init_timeout_seconds, self._run_timeout_seconds) if len(self._http_ip_port) != 0: gloo.set_http_store(self._http_ip_port[0], int(self._http_ip_port[1]), "pserver") else: gloo.set_hdfs_store(self._hdfs_path + "/pserver", self._hdfs_name, self._hdfs_ugi) gloo.init() self._node_type_comm = gloo gloo = fluid.core.Gloo() all_list = worker_endpoints + eplist gloo.set_rank(all_list.index(self._cur_endpoint)) gloo.set_size(len(all_list)) gloo.set_prefix(self._prefix) gloo.set_iface(self._iface) gloo.set_timeout_seconds(self._init_timeout_seconds, self._run_timeout_seconds) if len(self._http_ip_port) != 0: gloo.set_http_store(self._http_ip_port[0], int(self._http_ip_port[1]), "all") else: gloo.set_hdfs_store(self._hdfs_path + "/all", self._hdfs_name, self._hdfs_ugi) gloo.init() self._all_comm = gloo self._trainers_num = trainers_num self._server_endpoints = eplist self._role = role self._current_id = current_id self._rank = all_list.index(self._cur_endpoint) self._size = len(all_list) self._worker_endpoints = worker_endpoints if self._http_server is not None: # set running status to False self._http_server_d["running"] = False # wait until child process exits self._http_server.join() self._role_is_generated = True def all_gather(self, input): """ all gather between trainers and pservers Args: input(int|float): input value Returns: return a list of values """ return self._all_gather(input) def all_reduce_worker(self, input, output, mode="sum"): """ all reduce between trainers if current role is TRAINER, only support array of one dim. Args: input(list/numpy.array): array of one dim output(list/numpy.array): array of one dim mode(str): "sum" or "min" or "max" """ if not self.is_worker(): return self._all_reduce(input, output, mode) def barrier_worker(self): """ barrier between trainers if current role is TRAINER """ self._barrier_worker() def barrier_all(self): """ barrier between trainers if current role is PSERVER """ self._barrier_all() def get_local_endpoint(self): """ get local endpoint of current process """ if not self._role_is_generated: self.generate_role() return self._cur_endpoint def get_trainer_endpoints(self): """ get endpoint of all trainers """ if not self._role_is_generated: self.generate_role() return self._worker_endpoints def get_pserver_endpoints(self): """ get endpoint of all pservers """ if not self._role_is_generated: self.generate_role() return self._server_endpoints def is_worker(self): """ whether current process is worker """ if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER def is_server(self): """ whether current process is server """ if not self._role_is_generated: self.generate_role() return self._role == Role.SERVER def is_first_worker(self): """ whether current process is worker of rank 0 """ if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): """ get index of current worker """ if not self._role_is_generated: self.generate_role() return self._current_id def server_index(self): """ get index of current server """ if not self._role_is_generated: self.generate_role() return self._current_id def worker_num(self): """ retrun the current number of worker """ if not self._role_is_generated: self.generate_role() return self._worker_num() def server_num(self): """ return the current number of server """ if not self._role_is_generated: self.generate_role() return self._server_num() def _barrier_worker(self): """ barrier all workers in current distributed job """ if not self._role_is_generated: self.generate_role() if self.is_worker(): self._node_type_comm.barrier() def _barrier_all(self): """ barrier all workers and servers in current distributed job """ if not self._role_is_generated: self.generate_role() self._all_comm.barrier() def _barrier_server(self): """ barrier all servers in current distributed job """ if not self._role_is_generated: self.generate_role() if self.is_server(): self._node_type_comm.barrier() def _worker_num(self): """ return the current number of worker """ if not self._role_is_generated: self.generate_role() return self._trainers_num def _server_num(self): """ return the current number of server """ if not self._role_is_generated: self.generate_role() return len(self._server_endpoints) def _finalize(self): """Default do nothing.""" pass def _all_reduce(self, input, output, mode="sum"): """ all reduce between all workers Args: input(list|numpy.array): array of one dim output(list|numpy.array): array of one dim mode(str): "sum" or "min" or "max" """ if not self._role_is_generated: self.generate_role() input_list = [i for i in input] ans = self._node_type_comm.all_reduce(input_list, mode) for i in range(len(ans)): output[i] = ans[i] def _all_gather(self, obj): """ gather between all workers and pservers """ if not self._role_is_generated: self.generate_role() self._barrier_all() return self._all_comm.all_gather(obj) def _worker_gather(self, obj): """ gather between all workers """ if not self._role_is_generated: self.generate_role() if not self.is_worker(): return None self._barrier_worker() return self._node_type_comm.all_gather(obj) def _get_rank(self): """ get current rank in all workers and pservers """ if not self._role_is_generated: self.generate_role() return self._rank def _get_size(self): """ get total num of all workers and pservers """ if not self._role_is_generated: self.generate_role() return self._size def __get_default_iface(self): """ get default physical interface """ default1 = self.__get_default_iface_from_gateway() default2 = self.__get_default_iface_from_interfaces() return default2 if default1 == "lo" else default1 def __get_default_iface_from_gateway(self): """ get default physical interface """ import netifaces gateways = netifaces.gateways() if gateways.get(netifaces.AF_INET) != None: gateway = gateways[netifaces.AF_INET] if len(gateway) > 0 and len(gateway[0]) > 1: return gateway[0][1] return "lo" def __get_default_iface_from_interfaces(self): """ get default physical interface """ import netifaces for intf_name in netifaces.interfaces(): addresses = netifaces.ifaddresses(intf_name) if netifaces.AF_INET in addresses: ipv4_addresses = addresses[netifaces.AF_INET] for ipv4_address in ipv4_addresses: if 'broadcast' in ipv4_address: return intf_name return "lo" def __start_kv_server(self, http_server_d, size_d): from paddle.fluid.incubate.fleet.utils.http_server import KVServer http_server = KVServer(int(self._http_ip_port[1]), size_d) http_server.start() wait_seconds = 5 while http_server_d.get("running", False) and not http_server.shoud_stop(): time.sleep(wait_seconds) http_server.stop() class UserDefinedRoleMaker(RoleMakerBase): """ UserDefinedRoleMaker is designed for worker and server assignment under manual. Typically, a worker and a server node will be appointed on each physical node, It can be assign by user. """ def __init__(self, current_id=0, role=Role.WORKER, worker_num=0, server_endpoints=None): super(UserDefinedRoleMaker, self).__init__() if not isinstance(server_endpoints, list): raise TypeError("server_endpoints must be as string list") elif len(server_endpoints) <= 0: raise ValueError( "the length of server_endpoints list must be greater than 0") elif len(server_endpoints) != len(set(server_endpoints)): raise ValueError("server_endpoints can't have duplicate elements") else: for server_endpoint in server_endpoints: if not isinstance(server_endpoint, str): raise TypeError( "every element in server_endpoints list must be as string" ) self._server_endpoints = server_endpoints if role != Role.WORKER and role != Role.SERVER: raise TypeError("role must be as Role") else: self._role = role if not isinstance(current_id, int): raise TypeError("current_id must be as int") else: if current_id < 0: raise ValueError( "current_id must be greater than or equal to 0") elif self._role == Role.SERVER and current_id >= len( server_endpoints): raise ValueError( "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1" ) self._current_id = current_id if not isinstance(worker_num, int): raise TypeError("worker_num must be as int") else: if worker_num <= 0: raise ValueError("worker_num must be greater than 0") self._worker_num = worker_num def generate_role(self): self._role_is_generated = True def is_worker(self): return self._role == Role.WORKER def is_server(self): return self._role == Role.SERVER def is_first_worker(self): return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): return self._current_id def server_index(self): return self._current_id def worker_num(self): return self._worker_num class UserDefinedCollectiveRoleMaker(RoleMakerBase): """ UserDefinedCollectiveRoleMaker is designed for worker assignment under manual for collective mode. """ def __init__(self, current_id=0, worker_endpoints=None): super(UserDefinedCollectiveRoleMaker, self).__init__() if not isinstance(worker_endpoints, list): raise TypeError("worker_endpoints must be as string list") elif len(worker_endpoints) <= 0: raise ValueError( "the length of worker_endpoints list must be greater than 0") elif len(worker_endpoints) != len(set(worker_endpoints)): raise ValueError("worker_endpoints can't have duplicate elements") else: for worker_endpoint in worker_endpoints: if not isinstance(worker_endpoint, str): raise TypeError( "every element in worker_endpoints list must be as string" ) self._worker_endpoints = worker_endpoints if not isinstance(current_id, int): raise TypeError("current_id must be as int") else: if current_id < 0: raise ValueError( "current_id must be greater than or equal to 0") elif current_id >= len(worker_endpoints): raise ValueError( "current_id must be less than or equal to len(worker_endpoints) - 1" ) self._current_id = current_id self._worker_num = len(self._worker_endpoints) def generate_role(self): self._role_is_generated = True def is_worker(self): return True def is_first_worker(self): return self._current_id == 0 def worker_index(self): return self._current_id def worker_num(self): return self._worker_num