# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard class TestRandnOp(unittest.TestCase): def test_api(self): x1 = paddle.randn(shape=[1000, 784], dtype='float32') x2 = paddle.randn(shape=[1000, 784], dtype='float64') x3 = fluid.layers.fill_constant( shape=[1000, 784], dtype='float32', value=0) paddle.randn(shape=[1000, 784], out=x3, dtype='float32') x4 = paddle.randn(shape=[1000, 784], dtype='float32', device='cpu') x5 = paddle.randn(shape=[1000, 784], dtype='float32', device='gpu') x6 = paddle.randn( shape=[1000, 784], dtype='float32', device='gpu', stop_gradient=False) place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( ) else fluid.CPUPlace() exe = fluid.Executor(place) res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[x1, x2, x3, x4, x5, x6]) self.assertAlmostEqual(np.mean(res[0]), .0, delta=0.1) self.assertAlmostEqual(np.std(res[0]), 1., delta=0.1) self.assertAlmostEqual(np.mean(res[1]), .0, delta=0.1) self.assertAlmostEqual(np.std(res[1]), 1., delta=0.1) self.assertAlmostEqual(np.mean(res[2]), .0, delta=0.1) self.assertAlmostEqual(np.std(res[2]), 1., delta=0.1) self.assertAlmostEqual(np.mean(res[3]), .0, delta=0.1) self.assertAlmostEqual(np.std(res[3]), 1., delta=0.1) self.assertAlmostEqual(np.mean(res[4]), .0, delta=0.1) self.assertAlmostEqual(np.std(res[4]), 1., delta=0.1) self.assertAlmostEqual(np.mean(res[5]), .0, delta=0.1) self.assertAlmostEqual(np.std(res[5]), 1., delta=0.1) class TestRandnOpError(unittest.TestCase): def test_error(self): with program_guard(Program(), Program()): # The argument shape's size of randn_op should not be 0. def test_shape_size(): out = paddle.randn(shape=[]) self.assertRaises(AssertionError, test_shape_size) # The argument shape's type of randn_op should be list or tuple. def test_shape_type(): out = paddle.randn(shape=1) self.assertRaises(TypeError, test_shape_type) # The argument dtype of randn_op should be float32 or float64. def test_dtype_float16(): out = paddle.randn(shape=[1, 2], dtype='float16') self.assertRaises(TypeError, test_dtype_float16) # The argument dtype of randn_op should be float32 or float64. def test_dtype_int32(): out = paddle.randn(shape=[1, 2], dtype='int32') self.assertRaises(TypeError, test_dtype_int32) # The argument dtype of randn_op should be float32 or float64. def test_dtype_int64(): out = paddle.randn(shape=[1, 2], dtype='int64') self.assertRaises(TypeError, test_dtype_int64) # The argument dtype of randn_op should be float32 or float64. def test_dtype_uint8(): out = paddle.randn(shape=[1, 2], dtype='uint8') self.assertRaises(TypeError, test_dtype_uint8) # The argument dtype of randn_op should be float32 or float64. def test_dtype_bool(): out = paddle.randn(shape=[1, 2], dtype='bool') self.assertRaises(TypeError, test_dtype_bool) if __name__ == "__main__": unittest.main()