/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include "io/fs.h" #include "paddle/fluid/framework/data_feed_factory.h" #include "paddle/fluid/framework/data_set.h" #include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/fleet/fleet_wrapper.h" #include "paddle/fluid/framework/trainer.h" #if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU) && \ (defined PADDLE_WITH_PSLIB) #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/cuda_device_guard.h" #endif namespace paddle { namespace framework { void HeterXpuTrainer::Initialize(const TrainerDesc& trainer_desc, Dataset* dataset) { srand((unsigned)time(NULL)); param_ = trainer_desc.downpour_param(); for (int i = 0; i < param_.dense_table_size(); ++i) { uint64_t table_id = static_cast(param_.dense_table(i).table_id()); auto table = param_.dense_table(i); dense_grad_names_[table_id].resize(table.dense_grad_name_size()); for (int j = 0; j < table.dense_grad_name_size(); ++j) { dense_grad_names_[table_id][j] = table.dense_grad_name(j); } } scale_datanorm_ = trainer_desc.scale_datanorm(); int place_num = trainer_desc.worker_places_size(); for (int i = 0; i < place_num; ++i) { int num = trainer_desc.worker_places(i); #ifdef PADDLE_WITH_CUDA platform::CUDAPlace place = platform::CUDAPlace(num); platform::CUDADeviceGuard guard(place.device); cudaStream_t stream; PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream)); copy_streams_.push_back(stream); places_.push_back(place); cudaEvent_t event; PADDLE_ENFORCE_CUDA_SUCCESS( cudaEventCreateWithFlags(&event, cudaEventDisableTiming)); events_.push_back(event); #endif #ifdef PADDLE_WITH_XPU platform::XPUPlace place = platform::XPUPlace(num); places_.push_back(place); #endif } // thread_num_ = trainer_desc.thread_num(); // SetDataset(dataset); // dump_fields_path_ = trainer_desc.dump_fields_path(); // dump_converter_ = trainer_desc.dump_converter(); // need_dump_field_ = false; // if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") { // need_dump_field_ = true; // } // if (need_dump_field_) { // auto &file_list = dataset->GetFileList(); // if (file_list.size() == 0) { // need_dump_field_ = false; // } // } // mpi_rank_ = trainer_desc.mpi_rank(); // mpi_size_ = trainer_desc.mpi_size(); // dump_file_num_ = trainer_desc.dump_file_num(); // const std::vector readers = // dataset->GetReaders(); // thread_num_ = readers.size(); for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size(); i++) { need_merge_var_names_.push_back( trainer_desc.downpour_param().stat_var_names(i)); } running_ = true; VLOG(3) << "going to initialize pull dense worker"; pull_dense_worker_ = PullDenseWorker::GetInstance(); pull_dense_worker_->Initialize(trainer_desc); VLOG(3) << "initialize pull dense worker"; SetDebug(trainer_desc.debug()); fleet_ptr_ = FleetWrapper::GetInstance(); heter_ptr_ = HeterWrapper::GetInstance(); RegisterServiceHandler(); // for (int i = 0; i < trainer_desc.worker_places_size(); ++i) { // int num = trainer_desc.worker_places(i); // platform::CUDAPlace place = platform::CUDAPlace(num); // platform::CUDADeviceGuard guard(place.device); // cudaStream_t stream; // PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream)); // copy_streams_.push_back(stream); // places_.push_back(place); // } trainer_desc_ = trainer_desc; } void HeterXpuTrainer::CreateThreadParam(const ProgramDesc& program, int num) { auto place = places_[num]; Scope* scope = place_scopes_[num]; #ifdef PADDLE_WITH_CUDA auto stream = copy_streams_[num]; auto event = events_[num]; auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device; platform::CUDADeviceGuard guard(dev_id); #endif #ifdef PADDLE_WITH_XPU xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device); #endif auto& block = program.Block(0); for (auto& var : block.AllVars()) { if (var->Persistable()) { auto name = var->Name(); Variable* root_var = root_scope_->FindVar(name); LoDTensor* root_tensor = root_var->GetMutable(); auto* ptr = scope->Var(name); InitializeVariable(ptr, proto::VarType::LOD_TENSOR); LoDTensor* thread_tensor = ptr->GetMutable(); #define HeterMemcpyFunc(cpp_type, proto_type) \ do { \ if (root_tensor->type() == proto_type) { \ HeterMemCpy(thread_tensor, root_tensor, place, stream); \ } \ } while (0) #define HeterMemcpyXpuFunc(cpp_type, proto_type) \ do { \ if (root_tensor->type() == proto_type) { \ HeterMemCpy(thread_tensor, root_tensor, place); \ } \ } while (0) #ifdef PADDLE_WITH_CUDA _ForEachDataType_(HeterMemcpyFunc); #endif #ifdef PADDLE_WITH_XPU _ForEachDataType_(HeterMemcpyXpuFunc); #endif } } #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, stream)); cudaEventSynchronize(event); #endif } #ifdef PADDLE_WITH_CUDA template void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor, const paddle::platform::Place& thread_place, cudaStream_t stream) { T* thread_ptr = thread_tensor->mutable_data(root_tensor->dims(), thread_place); T* root_ptr = root_tensor->data(); if (platform::is_cpu_place(root_tensor->place())) { memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr, platform::CPUPlace(), root_ptr, sizeof(T) * root_tensor->numel(), stream); } else { memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr, BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()), root_ptr, sizeof(T) * root_tensor->numel(), stream); } } #endif #ifdef PADDLE_WITH_XPU template void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor, LoDTensor* root_tensor, const paddle::platform::Place& thread_place) { T* thread_ptr = thread_tensor->mutable_data(root_tensor->dims(), thread_place); T* root_ptr = root_tensor->data(); if (platform::is_cpu_place(root_tensor->place())) { memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr, platform::CPUPlace(), root_ptr, sizeof(T) * root_tensor->numel()); } else { memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr, BOOST_GET_CONST(platform::XPUPlace, root_tensor->place()), root_ptr, sizeof(T) * root_tensor->numel()); } } #endif void HeterXpuTrainer::DumpWork(int tid) {} void HeterXpuTrainer::InitTrainerEnv(const ProgramDesc& main_program, const platform::Place& place) { CacheProgram(main_program); place_ = place; auto& profiler = paddle::ps::CostProfiler::instance(); profiler.register_profiler("xpu_service_run_task"); profiler.register_profiler("xpu_service_deserial"); profiler.register_profiler("xpu_service_launch_kernel"); profiler.register_profiler("xpu_service_wait"); } void HeterXpuTrainer::InitOtherEnv(const ProgramDesc& main_program) { auto& block = main_program.Block(0); pull_dense_worker_->SetRootScope(root_scope_); pull_dense_worker_->CreatePinVar(); for (size_t i = 0; i < places_.size(); ++i) { Scope* scope = &(root_scope_->NewScope()); // for (auto &var : block.AllVars()) { // if (var->Persistable()) { // auto *ptr = scope->Var(var->Name()); // InitializeVariable(ptr, var->GetType()); // } // } place_scopes_.push_back(scope); CreateThreadParam(main_program, i); pull_dense_worker_->AddThreadScope(scope); pull_dense_worker_->AddPlace(places_[i]); #ifdef PADDLE_WITH_CUDA pull_dense_worker_->AddStream(copy_streams_[i]); #endif } pull_dense_worker_->Start(); #ifdef PADDLE_WITH_CUDA for (auto& stream : copy_streams_) { cudaStreamSynchronize(stream); } #endif op_names_.clear(); for (auto& op_desc : block.AllOps()) { std::unique_ptr local_op = OpRegistry::CreateOp(*op_desc); op_names_.push_back(op_desc->Type()); OperatorBase* local_op_ptr = local_op.release(); ops_.push_back(local_op_ptr); continue; } xpu_begin_op_index_ = xpu_end_op_index_ = -1; xpu_begin_op_index_ = trainer_desc_.xpu_start_idx(); xpu_end_op_index_ = trainer_desc_.xpu_end_idx(); VLOG(0) << "xpu begin: " << xpu_begin_op_index_ << " xpu end: " << xpu_end_op_index_; // CHECK(xpu_begin_op_index_ == 0); // CHECK(xpu_end_op_index_ = ops_.size() - 1); //// init pool for (size_t i = 0; i < 6; ++i) { for (size_t j = 0; j < places_.size(); ++j) { int num = j; std::shared_ptr context = std::make_shared(); context->place_num_ = num; auto place = places_[num]; context->scope_ = &(place_scopes_[num]->NewScope()); auto& block = program_.Block(0); for (auto& var : block.AllVars()) { if (!var->Persistable()) { auto* ptr = context->scope_->Var(var->Name()); InitializeVariable(ptr, var->GetType()); } } for (auto& v : dense_grad_names_) { for (auto& name : v.second) { auto* ptr = context->scope_->Var(name + "pin"); InitializeVariable(ptr, proto::VarType::LOD_TENSOR); } } for (auto& op_desc : block.AllOps()) { std::unique_ptr local_op = OpRegistry::CreateOp(*op_desc); OperatorBase* local_op_ptr = local_op.release(); (context->ops_).push_back(local_op_ptr); } #ifdef PADDLE_WITH_CUDA auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device; platform::CUDADeviceGuard guard(dev_id); PADDLE_ENFORCE_CUDA_SUCCESS( cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming)); #endif object_pool_.Push(context); } } VLOG(3) << "init other env done."; } void HeterXpuTrainer::Run() {} int HeterXpuTrainer::EndPass(const HeterRequest* request, HeterResponse* response) { // int scope_num = object_pool_.Size(); for (size_t i = 0; i < need_merge_var_names_.size(); i++) { Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]); if (root_var == nullptr) { continue; } LoDTensor* root_tensor = root_var->GetMutable(); for (size_t j = 0; j < place_scopes_.size(); j++) { Scope* cur_thread_scope = place_scopes_[j]; Variable* thread_var = cur_thread_scope->FindVar(need_merge_var_names_[i]); if (thread_var == nullptr) { continue; } LoDTensor* thread_tensor = thread_var->GetMutable(); // if (root_tensor->numel() != thread_tensor->numel()) { // continue; // } #define MergeCallback(cpp_type, proto_type) \ do { \ if (root_tensor->type() == proto_type) { \ if (thread_tensor->type() != proto_type) { \ VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \ << "] " << need_merge_var_names_[i] \ << ", root tensor type=" << root_tensor->type() \ << ", thread tensor type=" << thread_tensor->type(); \ exit(-1); \ } \ MergeToRootScope(root_tensor, thread_tensor); \ } \ } while (0) _ForEachDataType_(MergeCallback); if (!platform::is_cpu_place(thread_tensor->place())) { #ifdef PADDLE_WITH_CUDA auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, thread_tensor->place()).device; platform::CUDADeviceGuard guard(dev_id); cudaMemset(thread_tensor->data(), 0, thread_tensor->numel() * SizeOfType(thread_tensor->type())); #endif #ifdef PADDLE_WITH_XPU auto place = thread_tensor->place(); xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContext* dev_ctx = pool.Get(place); const platform::XPUDeviceContext* xpu_ctx = reinterpret_cast(dev_ctx); xpu::memset(xpu_ctx->x_context(), thread_tensor->data(), 0, thread_tensor->numel() * SizeOfType(thread_tensor->type())); #endif } else { memset(thread_tensor->data(), 0, thread_tensor->numel() * SizeOfType(thread_tensor->type())); } } auto* merge_var = response->add_vars(); heter_ptr_->SerializeToReq(need_merge_var_names_[i], root_scope_, merge_var); if (!platform::is_cpu_place(root_tensor->place())) { #ifdef PADDLE_WITH_CUDA auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()).device; platform::CUDADeviceGuard guard(dev_id); cudaMemset(root_tensor->data(), 0, root_tensor->numel() * SizeOfType(root_tensor->type())); #endif #ifdef PADDLE_WITH_XPU auto place = root_tensor->place(); xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContext* dev_ctx = pool.Get(place); const platform::XPUDeviceContext* xpu_ctx = reinterpret_cast(dev_ctx); xpu::memset(xpu_ctx->x_context(), root_tensor->data(), 0, root_tensor->numel() * SizeOfType(root_tensor->type())); #endif } else { memset(root_tensor->data(), 0, root_tensor->numel() * SizeOfType(root_tensor->type())); } } return 0; } template void HeterXpuTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) { LoDTensor tmp_root; TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root); T* tmp_root_data = tmp_root.data(); LoDTensor tmp_tensor; TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor); T* data = tmp_tensor.data(); for (int i = 0; i < tmp_tensor.numel(); i++) { tmp_root_data[i] += data[i]; } TensorCopy(tmp_root, root_tensor->place(), root_tensor); } int HeterXpuTrainer::StopService(const HeterRequest* request, HeterResponse* response) { std::unique_lock lock(mutex_); running_ = false; cond_.notify_one(); return 0; } int HeterXpuTrainer::RunTask(const HeterRequest* request, HeterResponse* response) { auto timer = std::make_shared("xpu_service_run_task"); std::shared_ptr context = object_pool_.Get(); if (!context->scope_) { int num = rand_r() % places_.size(); context->place_num_ = num; auto place = places_[num]; context->scope_ = &(place_scopes_[num]->NewScope()); auto& block = program_.Block(0); for (auto& var : block.AllVars()) { if (!var->Persistable()) { auto* ptr = context->scope_->Var(var->Name()); InitializeVariable(ptr, var->GetType()); } } for (auto& v : dense_grad_names_) { for (auto& name : v.second) { auto* ptr = context->scope_->Var(name + "pin"); InitializeVariable(ptr, proto::VarType::LOD_TENSOR); } } for (auto& op_desc : block.AllOps()) { std::unique_ptr local_op = OpRegistry::CreateOp(*op_desc); OperatorBase* local_op_ptr = local_op.release(); (context->ops_).push_back(local_op_ptr); } #ifdef PADDLE_WITH_CUDA auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device; platform::CUDADeviceGuard guard(dev_id); PADDLE_ENFORCE_CUDA_SUCCESS( cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming)); #endif } context->Reset(); auto place = places_[context->place_num_]; { auto deserial_timer = std::make_shared("xpu_service_deserial"); for (int i = 0; i < request->vars_size(); ++i) { #ifdef PADDLE_WITH_CUDA heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place, copy_streams_[context->place_num_]); #endif #ifdef PADDLE_WITH_XPU heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place); #endif } #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE_CUDA_SUCCESS( cudaEventRecord(context->event_, copy_streams_[context->place_num_])); while (cudaEventQuery(context->event_) != cudaSuccess) { VLOG(3) << "wait for kernel"; bthread_yield(); } #endif } { auto launch_timer = std::make_shared("xpu_service_launch_kernel"); for (int i = xpu_begin_op_index_; i <= xpu_end_op_index_; ++i) { auto& op = (context->ops_)[i]; op->Run(*(context->scope_), place); } } #ifdef PADDLE_WITH_CUDA auto* dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); PADDLE_ENFORCE_CUDA_SUCCESS( cudaEventRecord(context->event_, dev_ctx->stream())); // cudaEventSynchronize(context->event_); { auto wait_timer = std::make_shared("xpu_service_wait"); while (cudaEventQuery(context->event_) != cudaSuccess) { VLOG(3) << "wait for kernel"; bthread_yield(); } } #endif #ifdef PADDLE_WITH_XPU xpu_wait(); #endif for (int i = 0; i < trainer_desc_.xpu_send_list_size(); ++i) { const std::string& varname = trainer_desc_.xpu_send_list(i); // CHECK(varname == "concat_1.tmp_0@GRAD"); auto* res_var = response->add_vars(); heter_ptr_->SerializeToReq(varname, context->scope_, res_var); } // std::string varname = "concat_1.tmp_0@GRAD"; // // auto* res_var = response->add_vars(); // heter_ptr_->SerializeToReq(varname, context->scope_, res_var); for (int i = 0; i < param_.program_config(0).push_dense_table_id_size(); ++i) { uint64_t tid = static_cast(param_.program_config(0).push_dense_table_id(i)); #ifdef PADDLE_WITH_CUDA fleet_ptr_->PushDenseVarsAsync( *(context->scope_), tid, dense_grad_names_[tid], &(context->push_dense_status_), scale_datanorm_, request->cur_batch(), places_[context->place_num_], copy_streams_[context->place_num_], context->event_); #endif #ifdef PADDLE_WITH_XPU fleet_ptr_->PushDenseVarsAsync( *(context->scope_), tid, dense_grad_names_[tid], &(context->push_dense_status_), scale_datanorm_, request->cur_batch(), places_[context->place_num_]); #endif } for (int i = 0; i < param_.program_config(0).push_dense_table_id_size(); ++i) { uint64_t tid = static_cast(param_.program_config(0).push_dense_table_id(i)); pull_dense_worker_->IncreaseThreadVersion(0, tid); } VLOG(3) << "push dense gradient done."; context->scope_->DropKids(); object_pool_.Push(context); VLOG(0) << "pool size " << object_pool_.Size(); return 0; } void HeterXpuTrainer::RegisterServiceHandler() { heter_ptr_->RegisterServiceHandler( 0, [this](const HeterRequest* request, HeterResponse* response) -> int { return this->RunTask(request, response); }); heter_ptr_->RegisterServiceHandler( 1, [this](const HeterRequest* request, HeterResponse* response) -> int { return this->EndPass(request, response); }); heter_ptr_->RegisterServiceHandler( 2, [this](const HeterRequest* request, HeterResponse* response) -> int { return this->StopService(request, response); }); } Scope* HeterXpuTrainer::GetWorkerScope(int thread_id) { return nullptr; } void HeterXpuTrainer::Finalize() { // for (auto &th : threads_) { // th.join(); // } std::unique_lock lock(mutex_); cond_.wait(lock, [this] { return !running_; }); sleep(3); pull_dense_worker_->Stop(); root_scope_->DropKids(); } } // namespace framework } // namespace paddle #endif