// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/eager/utils.h" #include "paddle/fluid/eager/accumulation/accumulation_node.h" #include "paddle/fluid/eager/api/utils/global_utils.h" #include "paddle/fluid/eager/api/utils/hook_utils.h" #include "paddle/fluid/eager/tensor_wrapper.h" #include "paddle/phi/api/all.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/compat/convert_utils.h" #include "paddle/phi/core/tensor_meta.h" #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/phi_utils.h" #include "paddle/fluid/framework/variable.h" PADDLE_DEFINE_EXPORTED_bool(retain_grad_for_all_tensor, true, "retain grad for all tensor"); namespace egr { /** * Implementation of Eager Utils. **/ AutogradMeta* EagerUtils::autograd_meta(paddle::experimental::Tensor* target) { auto* p_autograd_meta = target->get_autograd_meta(); if (!p_autograd_meta) { auto p_autograd_meta_ptr = std::make_shared(); p_autograd_meta = p_autograd_meta_ptr.get(); target->set_autograd_meta(p_autograd_meta_ptr); } return static_cast(p_autograd_meta); } AutogradMeta* EagerUtils::unsafe_autograd_meta( const paddle::experimental::Tensor& target) { auto* p_autograd_meta = target.get_autograd_meta(); PADDLE_ENFORCE(p_autograd_meta, paddle::platform::errors::Fatal( "Null autograd_meta gotten from unsafe_autograd_meta()")); return static_cast(p_autograd_meta); } std::vector EagerUtils::unsafe_autograd_meta( const std::vector& targets) { std::vector metas; metas.reserve(targets.size()); for (const paddle::experimental::Tensor& t : targets) { metas.emplace_back(unsafe_autograd_meta(t)); } return metas; } AutogradMeta* EagerUtils::nullable_autograd_meta( const paddle::experimental::Tensor& target) { auto* p_autograd_meta = target.get_autograd_meta(); if (!p_autograd_meta) return nullptr; return static_cast(p_autograd_meta); } AutogradMeta* EagerUtils::nullable_autograd_meta( const paddle::optional& target) { if (target.get_ptr() != nullptr) { return EagerUtils::nullable_autograd_meta(*(target.get_ptr())); } return nullptr; } std::vector EagerUtils::nullable_autograd_meta( const std::vector& targets) { std::vector metas; metas.reserve(targets.size()); for (const paddle::experimental::Tensor& t : targets) { metas.emplace_back(nullable_autograd_meta(t)); } return metas; } std::vector EagerUtils::nullable_autograd_meta( const std::vector& targets) { std::vector metas; metas.reserve(targets.size()); for (const paddle::experimental::Tensor* t : targets) { metas.emplace_back(nullable_autograd_meta(*t)); } return metas; } std::vector EagerUtils::autograd_meta( std::vector* targets) { std::vector ret; ret.reserve(targets->size()); // for autograd_meta we can tolerent it has nullptr. for (size_t i = 0; i < targets->size(); i++) { auto* p_autograd_meta = autograd_meta(&((*targets)[i])); ret.emplace_back(p_autograd_meta); } return ret; } std::vector EagerUtils::autograd_meta( std::vector* targets) { std::vector ret; ret.reserve(targets->size()); // for autograd_meta we can tolerent it has nullptr. for (size_t i = 0; i < targets->size(); i++) { auto* p_autograd_meta = autograd_meta((*targets)[i]); ret.emplace_back(p_autograd_meta); } return ret; } std::pair EagerUtils::OutRankInfo( const paddle::experimental::Tensor& target) { return unsafe_autograd_meta(target)->OutRankInfo(); } std::shared_ptr EagerUtils::grad_node( const paddle::experimental::Tensor& target) { auto* meta = nullable_autograd_meta(target); if (meta) { return meta->GetMutableGradNode(); } else { return nullptr; } } paddle::experimental::Tensor* EagerUtils::mutable_grad( const paddle::experimental::Tensor& target) { auto* meta = nullable_autograd_meta(target); if (meta) { return meta->MutableGrad(); } else { return nullptr; } } void EagerUtils::SetHistory(std::vector* autograd_metas, const std::shared_ptr& grad_node) { for (const auto& autograd_meta : *autograd_metas) { if (autograd_meta->GradNode()) { VLOG(7) << "Should not set grad node twice, original node is:" << autograd_meta->GradNode()->name() << " current is: " << grad_node->name(); } autograd_meta->SetGradNode(grad_node); } } void EagerUtils::SetHistory(AutogradMeta* autograd_meta, const std::shared_ptr& grad_node) { if (autograd_meta->GradNode()) { VLOG(7) << "Should not set grad node twice, original node is:" << autograd_meta->GradNode()->name() << "current is: " << grad_node->name(); } autograd_meta->SetGradNode(grad_node); } void EagerUtils::SetOutRankWithSlot(std::vector* targets, size_t slot_id) { // Set OutRankInfo from 0 to size of targets for (size_t i = 0; i < targets->size(); i++) { (*targets)[i]->SetSingleOutRankWithSlot(slot_id, i); } } void EagerUtils::SetOutRankWithSlot(AutogradMeta* target, size_t slot_id) { target->SetSingleOutRankWithSlot(slot_id, 0); } std::shared_ptr EagerUtils::TrySyncToVar( const paddle::experimental::Tensor& tensor) { return std::make_shared(tensor); } std::vector> EagerUtils::TrySyncToVars( const paddle::experimental::Tensor& tensor) { return {TrySyncToVar(tensor)}; } std::vector> EagerUtils::TrySyncToVars( paddle::experimental::Tensor* tensor) { PADDLE_ENFORCE_NOT_NULL( tensor, paddle::platform::errors::Fatal( "Should Not Pass Empty tensor pointer in, since only output can " "reach this, please check output value and make sure it's not null")); return {TrySyncToVar(*tensor)}; } std::vector> EagerUtils::TrySyncToVars( const std::vector& tensors) { std::vector> res; size_t num = tensors.size(); res.reserve(num); for (size_t i = 0; i < num; i++) { auto* tensor = tensors[i]; PADDLE_ENFORCE_NOT_NULL( tensor, paddle::platform::errors::Fatal( "Tensor is null and cannot be copied. " "We are tring to TrySyncToVars tensor from its " "shared_ptr, this error may indicate some outputs " "are nullptr")); res.emplace_back(TrySyncToVar(*tensor)); } return res; } std::vector> EagerUtils::TrySyncToVars( const std::vector& tensors) { std::vector> res; size_t num = tensors.size(); res.reserve(num); for (size_t i = 0; i < num; i++) { res.emplace_back(TrySyncToVar(tensors[i])); } return res; } std::vector> EagerUtils::CreateVars( const size_t num) { std::vector> res; res.reserve(num); for (size_t i = 0; i < num; i++) { res.emplace_back( new EagerVariable(egr::Controller::Instance().GenerateUniqueName())); } return res; } void EagerUtils::HandleViewBetweenInputAndOutput( const std::shared_ptr& input_var, const std::shared_ptr& view_output_var) { PADDLE_ENFORCE_EQ( input_var->Var().IsInitialized(), true, paddle::platform::errors::InvalidArgument( "Tensor %s has not been initialized!", input_var->name())); if (phi::DenseTensor::classof(input_var->GetTensorBase().get())) { auto input_dense_tensor = std::dynamic_pointer_cast(input_var->GetTensorBase()); PADDLE_ENFORCE_EQ( input_dense_tensor->IsInitialized(), true, paddle::platform::errors::InvalidArgument( "DenseTensor %s has not been initialized!", input_var->name())); auto* view_output_tensor = view_output_var->MutableVar()->GetMutable(); view_output_tensor->ShareBufferWith(*input_dense_tensor); view_output_tensor->ShareInplaceVersionCounterWith(*input_dense_tensor); VLOG(3) << "Perform View between Output Var(" << view_output_var->name() << ") and Input Var(" << input_var->name() << "), share allocation and inplace version."; } } void EagerUtils::HandleViewBetweenInputAndOutput( const paddle::experimental::Tensor& input_tensor, paddle::experimental::Tensor* view_output_tensor) { PADDLE_ENFORCE_EQ( input_tensor.initialized(), true, paddle::platform::errors::InvalidArgument( "Tensor %s has not been initialized!", input_tensor.name())); if (input_tensor.is_dense_tensor()) { auto input_dense_tensor = std::dynamic_pointer_cast(input_tensor.impl()); if (view_output_tensor->impl() == nullptr) { view_output_tensor->set_impl(std::make_shared()); } auto view_output_dense_tensor = std::dynamic_pointer_cast(view_output_tensor->impl()); view_output_dense_tensor->ShareBufferWith(*input_dense_tensor); view_output_dense_tensor->ShareInplaceVersionCounterWith( *input_dense_tensor); VLOG(3) << "Perform View between Output Tensor(" << view_output_tensor->name() << ") and Input Tensor(" << input_tensor.name() << "), share allocation and inplace version."; } } std::vector EagerUtils::GetOutputs( const std::vector>& outs) { std::vector res; res.reserve(outs.size()); for (const auto& out : outs) { PADDLE_ENFORCE_NOT_NULL( out.get(), paddle::platform::errors::Fatal( "Eager Tensor %s is null and cannot be copied. " "We are tring to Get Output tensor from its " "shared_ptr, this error may indicate some outputs " "are nullptr", out->name())); res.emplace_back(out->GetTensorBase(), out->name()); } return res; } paddle::experimental::Tensor EagerUtils::GetOutput( const std::shared_ptr& out) { PADDLE_ENFORCE_NOT_NULL( out.get(), paddle::platform::errors::Fatal( "Eager Tensor %s is null and cannot be copied. We " "are tring to Get Output tensor from its shared_ptr, " "this error may indicate output is nullptr", out->name())); return paddle::experimental::Tensor(out->GetTensorBase(), out->name()); } void EagerUtils::GetOutput(const std::shared_ptr& out, paddle::experimental::Tensor* out_var) { PADDLE_ENFORCE_NOT_NULL( out_var, paddle::platform::errors::Fatal( "Tensor is null and cannot be copied. " "We are tring to OverwriteOutput from its " "shared_ptr, this error may indicate some outputs " "are nullptr")); out_var->set_impl(out->GetTensorBase()); out_var->set_name(out->name()); } void EagerUtils::GetOutputs( const std::vector>& outs, std::vector* result) { for (size_t i = 0; i < outs.size(); i++) { result->emplace_back(outs[i]->GetTensorBase()); } } void EagerUtils::GetOutputs( const std::vector>& outs, const std::vector& out_var) { for (size_t i = 0; i < outs.size(); i++) { PADDLE_ENFORCE_NOT_NULL( out_var[i], paddle::platform::errors::Fatal( "Tensor is null and cannot be copied. " "We are tring to OverwriteOutput from its " "shared_ptr, this error may indicate some outputs " "are nullptr")); out_var[i]->set_impl(outs[i]->GetTensorBase()); } } void EagerUtils::GetOutputs(const std::shared_ptr& out, std::vector* result) { result->emplace_back(out->GetTensorBase()); } void EagerUtils::GetOutputs( const std::shared_ptr& out, const std::vector& out_var) { PADDLE_ENFORCE_NOT_NULL( out_var[0], paddle::platform::errors::Fatal( "Tensor is null and cannot be copied. " "We are tring to OverwriteOutput from its " "shared_ptr, this error may indicate some outputs " "are nullptr")); out_var[0]->set_impl(out->GetTensorBase()); } void EagerUtils::Output2Result( const std::vector& out_var, std::vector* result) { result->reserve(out_var.size()); for (size_t i = 0; i < out_var.size(); i++) { result->emplace_back(*out_var[i]); } } paddle::experimental::Tensor EagerUtils::RecoverTensorWrapper( TensorWrapper* tw) { return tw->recover(); } std::vector EagerUtils::RecoverTensorWrapper( std::vector* tw) { std::vector ret; for (auto& t : *tw) { ret.emplace_back(t.recover()); } return ret; } void EagerUtils::CheckAndRetainGrad( const paddle::experimental::Tensor& tensor) { VLOG(6) << "Check RetainGradForTensor: " << tensor.name(); if (FLAGS_retain_grad_for_all_tensor) { VLOG(6) << "RetainGradForTensor: " << tensor.name(); egr::egr_utils_api::RetainGradForTensor(tensor); } } void EagerUtils::CheckAndRetainGrad( const std::vector& tensors) { if (FLAGS_retain_grad_for_all_tensor) { for (auto& tensor : tensors) { VLOG(6) << "RetainGradForTensor: " << tensor.name(); egr::egr_utils_api::RetainGradForTensor(tensor); } } } void EagerUtils::CheckAndRetainGrad( const std::vector& tensors) { if (FLAGS_retain_grad_for_all_tensor) { for (auto& tensor : tensors) { VLOG(6) << "RetainGradForTensor: " << tensor->name(); egr::egr_utils_api::RetainGradForTensor(*tensor); } } } std::shared_ptr EagerUtils::GetGradAccumulationNode( const paddle::experimental::Tensor& tensor) { auto* autograd_ptr = nullable_autograd_meta(tensor); if (!autograd_ptr) { return nullptr; } auto node_ptr = autograd_ptr->GetMutableGradNode(); if (node_ptr && node_ptr.get()) { if (!autograd_ptr->StopGradient()) { auto accumulation_ptr = std::dynamic_pointer_cast(node_ptr); if (accumulation_ptr) { return accumulation_ptr; } else { // Current GradNode is not a egr::GradNodeAccumulation PADDLE_THROW(paddle::platform::errors::Fatal( "GetGradAccumulationNode should only be called on leaf tensor, but " "target tensor: %s has GradNode which is not a " "GradNodeAccumulation, and this should not happend unless target " "tensor is modified by some ops and calling set history for it.", tensor.name())); } } else { // Current Tensor does not have grad since it's stop_gradient is true; return nullptr; } } else { if (!autograd_ptr->StopGradient()) { VLOG(6) << "Add GradNodeAccumulation for tensor: " << tensor.name(); autograd_ptr->SetGradNode( std::make_shared(autograd_ptr)); return autograd_ptr->GetMutableGradNode(); } else { return nullptr; } } } void EagerUtils::FillZeroForEmptyGradInputs( paddle::small_vector, kSlotSmallVectorSize>* in_grads, const paddle::small_vector, kSlotSmallVectorSize>& grad_in_metas) { for (size_t i = 0; i < in_grads->size(); i++) { for (size_t j = 0; j < (*in_grads)[i].size(); j++) { paddle::experimental::Tensor& grad = (*in_grads)[i][j]; if (!grad.initialized()) { const GradSlotMeta& grad_in_meta = grad_in_metas[i][j]; PADDLE_ENFORCE( grad_in_meta.HasTensorMeta(), paddle::platform::errors::Fatal( "Unable to fill empty grad inputs due to empty GradSlotMeta")); const auto& tensor_meta = grad_in_meta.GetTensorMeta(); auto tensor_with_zero = paddle::experimental::full( phi::vectorize(tensor_meta.dims), 0.0, tensor_meta.dtype, grad_in_meta.GetPlace()); grad.set_impl(tensor_with_zero.impl()); } } } } void EagerUtils::FillZeroForEmptyGradInput( paddle::experimental::Tensor* in_grad, const GradSlotMeta& grad_in_meta) { if (!in_grad->initialized()) { PADDLE_ENFORCE( grad_in_meta.HasTensorMeta(), paddle::platform::errors::Fatal( "Unable to fill empty grad inputs due to empty GradSlotMeta")); const auto& tensor_meta = grad_in_meta.GetTensorMeta(); auto tensor_with_zero = paddle::experimental::full(phi::vectorize(tensor_meta.dims), 0.0, tensor_meta.dtype, grad_in_meta.GetPlace()); in_grad->set_impl(tensor_with_zero.impl()); } } void EagerUtils::FillZeroForEmptyOptionalGradInput( paddle::experimental::Tensor* in_grad, const GradSlotMeta& grad_in_meta) { if (!in_grad->initialized() && grad_in_meta.HasTensorMeta()) { const auto& tensor_meta = grad_in_meta.GetTensorMeta(); auto tensor_with_zero = paddle::experimental::full(phi::vectorize(tensor_meta.dims), 0.0, tensor_meta.dtype, grad_in_meta.GetPlace()); in_grad->set_impl(tensor_with_zero.impl()); } } void EagerUtils::FillZeroForEmptyGradInput( std::vector* in_grads, const std::vector& grad_in_metas) { for (size_t i = 0; i < in_grads->size(); i++) { FillZeroForEmptyGradInput(&in_grads->at(i), grad_in_metas[i]); } } } // namespace egr