# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VGG16 benchmark in Fluid""" from __future__ import print_function import sys import time import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core import argparse import functools import os def vgg16_bn_drop(input): def conv_block(input, num_filter, groups, dropouts): return fluid.nets.img_conv_group( input=input, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type='max') conv1 = conv_block(input, 64, 2, [0.3, 0]) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) fc1 = fluid.layers.fc(input=drop, size=512, act=None) bn = fluid.layers.batch_norm(input=fc1, act='relu') drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) fc2 = fluid.layers.fc(input=drop2, size=512, act=None) return fc2 def get_model(args): if args.data_set == "cifar10": classdim = 10 if args.data_format == 'NCHW': data_shape = [3, 32, 32] else: data_shape = [32, 32, 3] else: classdim = 102 if args.data_format == 'NCHW': data_shape = [3, 224, 224] else: data_shape = [224, 224, 3] if args.use_reader_op: filelist = [ os.path.join(args.data_path, f) for f in os.listdir(args.data_path) ] data_file = fluid.layers.open_files( filenames=filelist, shapes=[[-1] + data_shape, (-1, 1)], lod_levels=[0, 0], dtypes=["float32", "int64"], thread_num=args.gpus, pass_num=args.pass_num) data_file = fluid.layers.double_buffer( fluid.layers.batch( data_file, batch_size=args.batch_size)) images, label = fluid.layers.read_file(data_file) else: images = fluid.layers.data(name='data', shape=dshape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program net = vgg16_bn_drop(images) predict = fluid.layers.fc(input=net, size=classdim, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) # inference program inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): inference_program = fluid.io.get_inference_program( target_vars=[batch_acc, batch_size_tensor]) # Optimization optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) # data reader train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10() if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), buf_size=5120), batch_size=args.batch_size * args.gpus) test_reader = paddle.batch( paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), batch_size=args.batch_size) return avg_cost, inference_program, optimizer, train_reader, test_reader, batch_acc