# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid def p_norm(x, axis, porder, keepdims=False): if axis is None: axis = -1 r = np.linalg.norm( x, ord=porder, axis=axis, keepdims=keepdims).astype(x.dtype) return r def frobenius_norm(x, axis=None, keepdims=False): if isinstance(axis, list): axis = tuple(axis) if axis is None: axis = (-2, -1) r = np.linalg.norm( x, ord='fro', axis=axis, keepdims=keepdims).astype(x.dtype) return r class TestFrobeniusNormOp(OpTest): def setUp(self): self.op_type = "frobenius_norm" self.init_test_case() x = (np.random.random(self.shape) + 1.0).astype(self.dtype) norm = frobenius_norm(x, self.axis, self.keepdim) self.reduce_all = (len(self.axis) == len(self.shape)) self.inputs = {'X': x} self.attrs = { 'dim': list(self.axis), 'keep_dim': self.keepdim, 'reduce_all': self.reduce_all } self.outputs = {'Out': norm} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = (1, 2) self.keepdim = False self.dtype = "float64" class TestFrobeniusNormOp2(TestFrobeniusNormOp): def init_test_case(self): self.shape = [5, 5, 5] self.axis = (0, 1) self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out') class TestPnormOp(OpTest): def setUp(self): self.op_type = "p_norm" self.init_test_case() x = (np.random.random(self.shape) + 0.5).astype(self.dtype) norm = p_norm(x, self.axis, self.porder, self.keepdim) self.inputs = {'X': x} self.attrs = { 'epsilon': self.epsilon, 'axis': self.axis, 'keepdim': self.keepdim, 'porder': float(self.porder) } self.outputs = {'Out': norm} self.gradient = self.calc_gradient() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = 1 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = False self.dtype = "float64" def calc_gradient(self): self.attrs = { 'epsilon': self.epsilon, 'axis': self.axis, 'keepdim': self.keepdim, 'porder': float(self.porder) } x = self.inputs["X"] porder = self.attrs["porder"] axis = self.attrs["axis"] if porder == 0: grad = np.zeros(x.shape).astype(x.dtype) elif porder in [float("inf"), float("-inf")]: norm = p_norm(x, axis=axis, porder=porder, keepdims=True) x_abs = np.abs(x) grad = np.sign(x) grad[x_abs != norm] = 0.0 else: norm = p_norm(x, axis=axis, porder=porder, keepdims=True) grad = np.power(norm, 1 - porder) * np.power( np.abs(x), porder - 1) * np.sign(x) numel = 1 for s in x.shape: numel *= s numel /= x.shape[axis] return [grad.astype(x.dtype) * 1 / numel] class TestPnormOp2(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out') class TestPnormOp3(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = np.inf self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out', user_defined_grads=self.gradient) class TestPnormOp4(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = -np.inf self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out', user_defined_grads=self.gradient) class TestPnormOp5(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = 0 self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out', user_defined_grads=self.gradient) def run_out(self, p, axis, shape_x, shape_y, dtype): with fluid.program_guard(fluid.Program()): data1 = fluid.data(name="X", shape=shape_x, dtype=dtype) data2 = fluid.data(name="Y", shape=shape_y, dtype=dtype) out = paddle.norm(input=data1, p=p, axis=axis, out=data2) place = fluid.CPUPlace() exe = fluid.Executor(place) result = exe.run(feed={"X": np.random.rand(*shape_x).astype(dtype)}, fetch_list=[data2, out]) self.assertEqual((result[0] == result[1]).all(), True) def run_fro(self, p, axis, shape_x, dtype): with fluid.program_guard(fluid.Program()): data = fluid.data(name="X", shape=shape_x, dtype=dtype) out = paddle.norm(input=data, p=p, axis=axis) place = fluid.CPUPlace() exe = fluid.Executor(place) np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype) expected_result = frobenius_norm(np_input, axis=axis) result, = exe.run(feed={"X": np_input}, fetch_list=[out]) self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True) def run_pnorm(self, p, axis, shape_x, dtype): with fluid.program_guard(fluid.Program()): data = fluid.data(name="X", shape=shape_x, dtype=dtype) out = paddle.norm(input=data, p=p, axis=axis) place = fluid.CPUPlace() exe = fluid.Executor(place) np_input = (np.random.rand(*shape_x) + 1.0).astype(dtype) expected_result = p_norm(np_input, porder=p, axis=axis).astype(dtype) result, = exe.run(feed={"X": np_input}, fetch_list=[out]) self.assertEqual((np.abs(result - expected_result) < 1e-6).all(), True) class API_NormTest(unittest.TestCase): def test_output_result(self): run_out(self, p=2, axis=1, shape_x=[3, 4], shape_y=[3], dtype="float32") run_out( self, p='fro', axis=None, shape_x=[3, 4], shape_y=[1], dtype="float32") def test_basic(self): run_fro(self, p='fro', axis=None, shape_x=[3, 3, 4], dtype="float32") run_fro(self, p='fro', axis=[0, 1], shape_x=[3, 3, 4], dtype="float64") run_pnorm(self, p=2, axis=None, shape_x=[3, 4], dtype="float32") run_pnorm(self, p=2, axis=1, shape_x=[3, 4], dtype="float64") run_pnorm(self, p=np.inf, axis=1, shape_x=[3, 4], dtype="float32") run_pnorm(self, p=-np.inf, axis=1, shape_x=[3, 4], dtype="float64") run_pnorm(self, p=0, axis=1, shape_x=[3, 4], dtype="float64") def test_name(self): with fluid.program_guard(fluid.Program()): x = fluid.data(name="x", shape=[10, 10], dtype="float32") y_1 = paddle.norm(x, p='fro', name='frobenius_name') y_2 = paddle.norm(x, p=2, name='pnorm_name') self.assertEqual(('frobenius_name' in y_1.name), True) self.assertEqual(('pnorm_name' in y_2.name), True) def test_errors(self): with fluid.program_guard(fluid.Program(), fluid.Program()): def err_dtype(p, shape_x, xdtype, out=None): data = fluid.data(shape=shape_x, dtype=xdtype) paddle.norm(data, p=p, out=out) self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "int64") out = fluid.data(name="out", shape=[1], dtype="int64") self.assertRaises(TypeError, err_dtype, "fro", [2, 2], "float64", out) self.assertRaises(TypeError, err_dtype, 2, [10], "int64") self.assertRaises(TypeError, err_dtype, 2, [10], "float64", out) data = fluid.data(name="data_2d", shape=[2, 2], dtype="float64") self.assertRaises(ValueError, paddle.norm, data, p="unsupport norm") self.assertRaises(ValueError, paddle.norm, data, p=[1]) self.assertRaises(ValueError, paddle.norm, data, p=[1], axis=-1) self.assertRaises( ValueError, paddle.norm, data, p='unspport', axis=[-2, -1]) data = fluid.data(name="data_3d", shape=[2, 2, 2], dtype="float64") self.assertRaises( ValueError, paddle.norm, data, p='unspport', axis=[-2, -1]) self.assertRaises( ValueError, paddle.norm, data, p='unspport', axis=[-3, -2, -1]) if __name__ == '__main__': unittest.main()